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ABSTRACT. Links between content knowledge in the mathematics domain and

in pedagogical reasoning were compared for university mathematicians, mathematicsmethods

professors, high school teachers, middle school teachers, and elementary

school teachers. Because of their experience in both mathematical content

and pedagogical concepts, mathematics-methods professors were expected

to integrate those domains into a coherent pedagogical content-knowledge

structure. That was the case. Although university mathematicians possessed

integrated content-knowledge structures, they tended to represent teaching

as transmission of knowledge and learning as accumulation of knowledge.

Mathematics-methods professors, high school teachers, elementary school

teachers, and, in most instances, middle school teachers appeared to conceptualize

teaching as facilitation of conceptual change and learning as an interactive

process. In addition, pathfinder network analysis showed concept maps to

yield more logically coherent representations of content-knowledge structure

than did similarity judgments of all pairwise comparisons. 

TO UNDERSTAND THE TEACHING OF MATHEMATICS, it is important to know how

teachers of mathematics organize the conceptual relationships of content

and the relationships of pedagogical concepts; it is perhaps most important

to know how teachers connect those two sets of concepts (Ball & McDiarmid,

1990; Carpenter,1989; Glaser,1984; Hiebert & Carpenter, 1989; Glaser, 1984;

Hiebert & Carpenter, 1992; Hiebert & Lefevre, 1986). Carpenter suggested

that the critical problem for research on teachers' thought processes,

knowledge structures, and problem solving is the nature of teachers' knowledge

and how it influences their instructional decisions. Shulman (1986, 1987)

suggested that content knowledge and pedagogical strategies necessarily

interact in the minds of teachers. That synthesis of content and pedagogy

is teachers' special form of understanding that facilitates good teaching

for effective learning. It is the "blending of content and pedagogy into

an understanding of how particular topics, problems, or issues are organized,

represented, and adapted to the diverse interests and abilities of learners

and presented for instruction" (Shulman, 1987, p. 8). Shulman and Quinlan

(1996) reiterated that theme and reviewed evidence for differences across

subject matters. For example, a skilled teacher who understands both mathematics

and social studies uses subject-specific strategies when teaching one or

the other. Depth of knowledge of the content of mathematics or social studies

is a necessary prerequisite to good teaching, but without pedagogical content

knowledge specific to the subject matter, instruction is less effective.

That issue was also addressed by Fennema and Franke (1992), who proposed

that measurement of teachers' knowledge of mathematics must relate the

organization of knowledge of mathematics to the organization of teaching

of mathematics. Schroeder and Lester ( 1989) determined that as individuals

increase connections among mathematical ideas, they can do one or more

of the following: (a) relate a given mathematical idea to a greater number

or variety of contexts, (b) relate a given problem to a greater number

of the mathematical ideas implicit in it, or (c) construct relationships

among the various mathematical ideas embedded in a problem. 

For mathematics teachers, what characterizes connections among (a) concepts

of mathematics, (b) pedagogical knowledge, and (c) pedagogical content

knowledge? To select a measure to assess these connections, one might consider

the methods that have been used to elicit knowledge structures. In early

attempts to determine an individual's knowledge structure, researchers

used semantic proximity techniques such as word-association and similarity-judgments

tasks (e.g., Fenker, 1975; Shavelson, 1972; Wainer & Kaye, 1974). Similarity-judgment

tasks, in which all possible pairs of concepts are presented and participants

are asked to assess the degree of similarity (highly related to unrelated)

between each presented pair, have remained popular (e.g., Acton, Johnson,

& Goldsmith, 1994; Gonzalvo, Canas, & Bajo, 1994). Those interconcept distances

have been analyzed by cluster analysis or by a form of multidimensional

scaling (Wainer & Kaye) such as pathfinder analysis (Schavaneveldt, 1990).

In the present research, we used pathfinder analysis to assess the logical

relationships (concept coherence) derived from paired comparisons versus

those derived from concept maps. 

Another approach to eliciting structural knowledge is the use of concept

maps (Novak & Gowin, 1984). Concept maps have been effective in assessing

learning gains and maturation of synthetic, integrative thinking (e.g.,

Beyerbach, 1988; Jones & Vesilind, 1996; Morine-Dershimer, 1993). Concept

maps allow for the depiction of both hierarchical (inclusive) and web-like

horizontal (comparative) links (e.g., Beyerbach, Smith, & Thomas, 1992;

Markham, Mintzes, & Jones, 1994; Novak & Gowin, 1984). The constructive,

generative mapping process has the advantage of allowing consideration

among concepts presented simultaneously-as opposed to isolated pairs-in

a similarity-judgments task assumed to be "minimally dependent on direct

conscious access of knowledge" (Goldsmith, Johnson, & Acton,1991, p. 94).

In both concept-mapping and similarity-judgments tasks, however, semantic

distance between concept nodes can be determined. The semantic-distance

construct is central to spreading-activation theory (Anderson, 1983) and

proximity-based reasoning (Hirst, 1991). 

Our intent in the present investigation was to measure semantic distances

among mathematics concepts and to examine pedagogical knowledge-structure

representations of university mathematicians, university mathematics-methods

professors, and public school mathematics teachers (elementary, middle,

and high school). The mathematics-content concepts (e.g., function) were

stressed in the National Council of Teachers of Mathematics (NCTM; 1989)

standards, are common threads across the mathematics curriculum, and appear

in earlier work about content structure in mathematics (e.g., Shavelson,

1974). The tasks in the present study required mathematics teachers to

make explicit their understanding of content-concept links and the knowledge

web that includes the teaching of those concepts at their own levels of

practice. According to the recent literature on mathematics education,

particularly on teaching mathematics, as individuals increase connections

among mathematical ideas, they can do some or all of the following: (a)

relate a given mathematical idea to a greater number or variety of contexts,

(b) relate a given problem to a greater number of mathematical ideas implicit

in it, or (c) construct relationships among the various mathematical ideas

embedded in a problem (Lester et al., 1994; Schroeder & Lester, 1989).

With respect to Shulman's (1987) proposed model of pedagogical reasoning

and action, the tasks included in the present research link (a) the components

of comprehension (purposes, subject-matter structures, and ideas within

and outside the discipline) and (b) transformation (preparation, representation,

selection, and adaptation to student characteristics). Comprehension of

the content concepts and purposes of mathematics education are necessary

but not sufficient to differentiate teachers from nonteachers. Shulman

argued that the key to describing the knowledge base of teaching lies at

the intersection of content and pedagogy. 

We predicted that the responses of the mathematics-methods professors would

show the most inclusive and widely applicable wisdom of practice because

of their knowledge of mathematics content and their pedagogical training

and experience. In addition, we expected that deep knowledge of mathematics

content would be evident for university mathematicians and high school

teachers because of their levels of training and application (Nitko, 1989).

Although middle school teachers and elementary teachers may have a more

limited knowledge of mathematics-content concepts, we expected that they,

as well as high school teachers, would have wisdom of pedagogy applied

to their own territory of teaching. We further predicted that university

mathematicians, although strong in the content concepts of mathematics,

would be weakest in application to instruction. Thus, we expected that

public school teachers (elementary, middle, and high school) would show

greater commonality in teaching suggestions with mathematicsmethods professors

than they would with university mathematicians. Four research questions

are related to those predictions: 1. Do teachers at different levels organize

concepts of mathematics in differentways? 

2. Are there differences among teachers' ratings of the strength of relationships

between mathematics word problems and content concepts? 3. Is there congruence

among the participants about their pedagogical reasoning related to the

concepts within word problems? 4. Does the use of a similarity-judgments

task elicited through all pairwise comparisons (content-concept pairs presented

in isolation) result in knowledge-structure representations that differ

from those elicited through a concept-mapping task (content concepts presented

simultaneously)? Method 

Participants and Design The participants (N = 15) were 3 university-level

mathematicians, 3 university-level mathematics-methods educators, 3 high

school math teachers (Grades 9-12), 3 middle school teachers (Grades 5-8),

and 3 elementary school teachers (Grades 1-4). The university mathematicians

(with 32, 23, and 17 years experience) taught both graduate and undergraduate

students, had no public school teaching experience, and were unfamiliar

with NCTM (1989) standards. The mathematics-methods professors (with 44,

15, and 12 years experience) had responsibilities for undergraduate teacher

preparation, had public school teaching experience, and were familiar with

NCTM (1989) standards. The high school math teachers (with 25, 16, and

15 years experience) taught a range of grades and math courses and were

familiar with NCTM (1989) standards. Two of the high school teachers had

bachelor's degrees, and 1 had a master's degree. The middle school teachers

(with 28, 23, and 14 years experience) taught Grade 8, Grade 5, and Grade

8, respectively, and had some familiarity with NCTM (1989) standards. All

had master's degrees. The elementary school teachers (with 22, 17, and

16 years experience) taught Grade 2, Grade 3, and Grade 2, respectively.

Two of those teachers were familiar with NCTM (1989) standards, and 1 was

not. Two had bachelor's degrees, and 1 had a master's degree. The public

school teachers were responsible for teaching mathematics. Teachers known

to the first author and her doctoral dissertation committee formed the

pool of potential participants. On the basis of perceived representativeness

of experienced teachers at that level, they were contacted in order. The

top 3 candidates at each level volunteered to be participants; each participant

was offered a $30 stipend. 

Teaching level was the independent variable in our design. The five betweensubjects

levels of that independent variable were university mathematicians, mathematics-methods

professors, high school teachers, middle school teachers, and elementary

school teachers. The dependent variables were concept-map distances among

mathematics-content concepts, identified content concepts in mathematics

word problems, proposals for teaching the word problems with the embedded

mathematics-content concepts, and pairwise relationship ratings for mathematics-content

concepts. Procedure and Materials Following an initial interview about

background, teaching experience, and familiarity with NCTM (1989) standards,

each teacher was presented with a series of four tasks. We designed the

tasks to provide an optimal context for representation of the teachers'

knowledge structures and pedagogical decisions. The participants were tested

individually in a mixed order in which the 3 participants in a particular

group were never tested sequentially. The sessions were audiotaperecorded.

Task 1 required each participant to generate a concept map of the core

concept set. A concept map is a two-dimensional schematic representation

of the links between concepts in a particular knowledge domain. On a 22

x 22-in. piece of white paper on a table in front of them, the participants

arranged 12 content concepts printed on 1 x 2-in. oval cardboard discs.

The 12 content concepts were binary operation, element, infinite-finite,

ordered pair, set, associativity, commutativity, inverse, identity, function,

distributive law, and estimation. The participants were instructed as follows:

For this task, I would like you to think about mathematics. The 12 discs

you see before you are labeled with mathematics-content concepts. Take

as much time as you want to look at them and their definitions on these

papers. When you are ready, I would like you to arrange them (slide them

around) on this big piece of paper to show the relationships of these concepts.

Put close together the ones you see as highly related. Put far apart the

ones that you think are not related. I'm going to tape the labeled discs

to the paper. After that, we're going to draw lines to show which ones

are connected. I will also ask you to describe for me your reason for connecting

two concepts with a particular line. Later, I will measure the lengths

of those lines to determine the distances among your concepts. Now, let

me demonstrate what I mean by using the discs labeled with some mammal

concepts. A one-paragraph definition, including examples, was provided

on paper for each mathematics-content concept. The participant could refer

to those definitions and examples as desired throughout that concept-map

task. In drawing links with ruler and pencil, the participants were asked

to provide a rationale for linking each pair of concepts that they joined.

There was no time limit. 

In Task 2, the participants compared the provided content concepts on their

map (and definition sheets) with nine word problems that were presented

to them on paper (see Table 1). The nine mathematics problems were selected

because they contained 1 or more of the 12 content concepts and they adhered

to the NCTM (1989) standards. The participants considered the strength

of the relationship between each problem and content concept and assigned

a value ranging from 1 (problem and content concept not related) to 9 (problem

and content concept highly related). The participants were orally instructed

as follows, and these instructions were printed above the word problems:

Below is a list of problems. Read each problem, one at a time, and decide

whether it is related to any of the content concepts on your map. Once

you have decided whether or not a relationship exists to any concept(s),

I'll write the number you tell me next to that concept on your map. That

is, decide how strongly a concept is related to the problem. The scale

is I = not related to 9 = highly related. The problems involved 1, 2, or

3 content concepts. For example, the problem on sharing pizza involved

the content concepts inverse and binary operation. The nine problems and

their embedded concepts are reported in Table 1. Task 3 required the participants

to indicate their proposals for teaching each of the problems to a learner

at the level of their choice. They were instructed as follows: That was

fine. Now, I would like you to propose how you would teach these problems

to the learners you work with. You can adapt the type of problem and the

concepts involved in it to any level of student (high school, college,

grade school). Start with Problem A. Tell me what alternatives (for example,

procedures, models, strategies, rules, representations) for teaching this

type of problem you might consider and how you might decide what to choose.

How would you do it? Common suggestions-for example, for teaching Problem

3 (ordered pair were to have the students generate data for some age-appropriate

phenomenon or select a data set of interest to them. The students could

then plot the data, thereby applying the concept of ordered pair to data

that made sense to them. Predominant suggestions for teaching the concepts

and examples of tape-recorded proposals are provided in the Results section.

[IMAGE TABLE] Captioned as: TABLE 1 

In Task 4, the participants judged the degree of relatedness between all

pairwise comparisons (66) of the 12 mathematics-content concepts. Each

pair was rated for relatedness on a scale ranging from 1 (little or no

relationship) to 9 (a strong relationship). For instance, if the participant

assigned a rating of 9 to the commutativity-set pair, he or she considered

those two concepts to be highly related. Pairs of content concepts were

presented and responses recorded via computer. The participant viewed the

instructions on the computer screen as the experimenter read them. All

possible pairs of concepts were presented in an independent random order

for each participant. Results 

Organization of Content Concepts When provided with the 12 content concepts,

the teachers arranged the cardboard discs with the concept names written

on them to form concept maps. One such map is presented in Figure 1. If

the teacher had drawn a link between two concepts on the concept map, we

measured the distance between those two concepts in centimeters. For example,

in Figure 1, the concepts of associativity and function are indirectly

linked through inverse and ordered pair or through ordered pair. The measurement

was taken directly from the associativity disk on the map to the function

disc. Even though the teachers may have drawn a curved link to avoid other

content concept discs, we took measurements in a straight line. We calculated

scaled distance scores (ranging from 1 to 9) on the basis of the longest

raw distance (measured with a ruler) for a connected (linked) pair of concepts

(e.g., distributive law to set in Figure 1). We determined the scale for

each teacher by dividing the longest raw distance from the concept map

to create nine exact intervals. With those scaled distance scores, we were

able to make comparisons among teachers. Even though each teacher had a

22 x 22-in. piece of paper on which to create the concept map, the longest

link that they actually used between two concepts was a more appropriate

standard than the longest link that could be made on that paper. We assigned

a scaled score of 1 (e.g., estimate in Figure 1) to concept pairs that

were not linked. On a cautionary note, even though the participants were

instructed to put close together the concepts they saw as highly related

and further apart the concepts they saw as less related, measurement between

them with a ruler may not represent psychological distance. However, those

distances were effective in discriminating among levels of participants

and produced much higher coherence values in the multidimensional scaling

analysis than did isolated ratings of relationships on a scale ranging

from I to 5. 

[IMAGE ILLUSTRATION] Captioned as: FIGURE 1. 

To determine the extent of relationships among the five groups of mathematics

teachers, we computed Pearson correlation coefficients. We first determined

a mean for the 3 participants in each of the five groups on the scaled

distance scores for each of the 66 comparisons (Concept I to Concept 2,

Concept I to Concept 3, . . , Concept 11 to Concept 12). Thus, there were

66 interconcept distance mean scores for the university mathematicians,

66 interconcept distance mean scores for the mathematics-methods professors,

and so on, for the five groups. The correlation between university mathematicians

and mathematicsmethods professors, for example, involved 66 scaled distance

score means for each group. According to the correlations, 1. University

mathematicians showed strongest agreement with mathematicsmethods professors

and weakest agreement with elementary school teachers (see Table 2). That

is, the concept maps of the university mathematicians were most similar

to those of the mathematics-methods professors and most discrepant from

those of elementary teachers. 

2. Mathematics-methods professors showed strongest agreement with university

mathematicians and weakest agreement with elementary school teachers. 3.

High school teachers showed strongest agreement with mathematics-methods

professors and weakest agreement with elementary school teachers. 

4. Middle school teachers showed agreement with university mathematicians,

mathematics-methods professors, high school teachers, and elementary school

teachers. (Those four correlations were not significantly different from

each other.) 

5. Elementary school teachers showed strongest agreement with high school

teachers and weakest agreement with university mathematicians. These findings,

in conjunction with the data in Table 2, support the prediction of greatest

depth of content knowledge among those individuals in higher levels of

mathematics teaching. 

To determine which links drawn in the participants' concept maps showed

significant differences among the five groups of teachers (independent

variable) in terms of scaled distances of the links (dependent variable),

we computed oneway analyses of variance (ANOVAs). As described, the scaled

distances from the concept maps were based on nine exact intervals and

were directly comparable across participants. They were, thus, interval

in nature, and ANOVA was appropriate. The likelihood of finding significant

results was increased because of the large number of tests conducted. Given

the exploratory nature of those analyses and the fact that they might be

validated by identification of concepts in the word problems (described

in the next section), we used no adjustment to a standard alpha level of

.05. From those ANOVAs, seven of the links between concepts yielded significant

differences among the groups of teachers, with F(4, 10) values ranging

from 3.73 to 6.37, all ps < .OS or < .01. The seven significant links were

function to inverse, function to ordered pair, function to estimate, function

to identity, identity to infinite-finite, infinite-finite to binary operation,

and ordered pair to element. Identification of Concepts in Problems 

Each of the nine word problems had an embedded content concept or concepts.

Of the 18 occurrences of the content concepts in the problems, mathematics-methods

professors identified an average of 11/18 (61%), high school teachers 10.7/18

(59%), university mathematicians 9/18 (50%), middle school teachers 8.3/18

(46%), and elementary teachers 7/18 (39%). Correct identification was defined

as a rating of 8 or 9 (on the 9-point scale) for a particular content concept

embedded in a problem. The most accurately identified content concepts

(identified by either all 15 or by 14 of the IS participants) were commutativity,

associativity, distributive law, and estimate. The least accurately identified

content concepts were identity and inverse (identified by either no participant

in a group or 1 participant in a group). Content concepts yielding the

most discrepancies among groups were function (which occurred in 4 of the

7 significant links in Task 1), ordered pair (which occurred in 2 of the

7 significant links in Task 1), element (which occurred in I of the 7 significant

links in Task 1), and binary operation (which occurred in I of the 7 significant

links in Task 1). Thus, the content concepts showing discrepancies among

groups of teachers as recognized in the word problems (Task 2) also were

strongly represented in the significant findings based on concept maps

(Task 1). 

[IMAGE TABLE] Captioned as: TABLE 2 

All of the groups were accurate (rate of 67% or more) in identifying associativity,

commutativity, distributive law, and estimate. All of the groups had difficulty

(rate of 33% or less) in identifying the concepts of inverse and identity.

All of the groups except elementary teachers demonstrated competence (rate

of 67% or more) in identifying function and infinite-finite. University

mathematicians and mathematics-methods professors were apt (rate of 67%

or more) at identifying ordered pair and element. Elementary teachers also

were apt at seeing element embedded in the problems. For both binary operation

and set, the mathematics-methods professors and high school teachers were

most proficient at identification. 

Suggestions for Teaching 

We tabulated each teaching suggestion from the transcribed tape recordings.

The recommendations were sorted into categories in accord with procedures

described by Knafl and Howard (1984) and Knafl and Webster (1988). Common

suggestions were to (a) use concrete objects (including manipulatives)

or representations of objects, (b) use illustrations (examples and nonexamples),

(c) use direct didactic methods such as stepwise telling, (d) use a constructivist

approach such as guided discovery and activities allowing for individual

differences, (e) read problem carefully or restate the problem, and (f)

teach explicitly the concept embedded in the problem. 

Table 3 contains a summary of the predominant teaching strategy (Task 3)

related to the predominant concept identified in each problem (Task 2).

In Problem 1, commutativity was the predominant identified concept for

all groups and use of objects or representations was the predominant suggested

strategy for all groups. 

In Problem 2, set was the predominant identified concept for all groups

and use of objects or representations was the predominant suggested strategy

for all groups except university mathematicians. 

In Problem 3, ordered pair was the predominant identified concept for university

mathematicians and mathematics-methods professors and constructivist or

individualized activities was the predominant suggested strategy for all

groups except university mathematicians. 

In Problem 4, binary operation was the predominant identified concept for

only middle school teachers and use of objects or representations was the

predominant suggested strategy for all groups except university mathematicians.

[IMAGE TABLE] Captioned as: en , w 
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In Problem 5, associativity was the predominant identified concept for

all groups and constructivist or individualized activities was the predominant

suggested strategy for mathematics-methods professors, high school teachers,

and elementary school teachers. 

In Problem 6, infinite-finite was the predominant identified concept for

all groups and illustrations was the predominant suggested strategy for

all groups. In Problem 7, function was the predominant identified concept

for all except elementary school teachers and use of objects or representations

was the predominant suggested strategy for all except university mathematicians.

In Problem 8, distributive law was the predominant identified concept for

all groups and use of objects or representations was the predominant suggested

strategy for mathematics-methods professors, high school teachers, and

elementary school teachers. 

In Problem 9, estimate was the predominant identified concept for all groups

and telling/stepwise was the predominant suggested strategy only for high

school teachers. These findings support the prediction of most commonalty

in teaching suggestions among the public school teachers and mathematics-methods

professors and least commonality with university mathematicians. 

The following quotations transcribed from the tape recordings illustrate

the character of the teaching suggestions. The following is an example

of mathematics-methods professors' typical strategies for teaching: Use

technology as a vehicle for guided discovery of inductive reasoning-type

approaches. Students generate data, analyze data, and plot data.. . . Perturb

by exemplification, counterexamples, open-ended questions centering on,

or coming out of, applications, to motivate their desire or even need to

know more. In response to one of the word problems, an elementary school

teacher said, Take a survey. Chart [their answers].... Ask lots of questions;

then get them to ask questions.... It makes the thinking process a little

bit different.... I do ask them to verbalize about math.... They have to

think about it in a different way.... They have to explain it to someone

else because-and you know we have some children that if you just look at

their paper seem to be very good at math, but they can't tell you why....

But I do want them to be able to share and say, "Okay, how did you do that?"

Sometimes they can do that. Sometimes not. That's hard to do. One high

school teacher justified rearranging the sequence of instruction for two

of the word problems this way: 

In [Problem] 1, it's a number property that you can-they can-experiment

with, and then, when they notice that sometimes it works and sometimes

it doesn't workwe're going to give it names when it works. But [Problem]

2-in order for us to classify these things, we already have to have, because

it's a description-it isn't just a property that you can mess around with....

You can define it first and then mess with it because . . . you're going

to put different definitions together and so, OK, I have some of this and

some of this, so this is a rectangle. The following are typical responses

of university mathematicians: Tell them matrix multiplication is not commutative.

Give them a proof (Response 1). Explain the way I understand it.... I kind

of like the way I try to explain things even though it's not very effective....

To me it's very important how I see things, how I understand things or

conceptualize things and communicate that to them. (Response 2). 

Pairwise Comparisons Versus Concept Maps In this final task, the participants

assigned a similarity-judgment score to each pair of content concepts (e.g.,

binary operation, commutativity) presented on a computer screen. The similarity-judgment

scores ranged from 1 (unrelated concept) to 9 (highly related concept).

For analysis, we arrayed those similarity judgments in a triangular matrix

for each participant (Task 4). We constructed a second triangular matrix

for each participant to indicate the scaled score distances derived from

the individual's concept map (Task 1). Those scaled scores also ranged

from 1 to 9 for each interconcept distance from the concept map. The two

triangular matrices for each participant, one from all pairwise comparisons

and one from the concept map, were each submitted to pathfinder analysis.

In pathfinder analysis (Schavaneveldt, 1990), one uses multidimensional

scaling to extract the underlying latent structure from such a triangular

matrix so that a network representation of the knowledge structure can

be derived. Examples of pathfinder analysis output appear in Figure 2 for

a mathematics-methods professor's concept-map scaled distances versus his

similarity ratings of all pairwise comparisons. 

Pathfinder analysis computes coherence. Coherence may be thought of as

triangulation in logic (e.g., if A is highly related to B and B is highly

related to C, then A should be related to C). Measures of coherence were

consistently higher (15 of 15) for concept maps than for similarity judgments

of all paired comparisons (see Table 4). The participants were seemingly

better able to construct coherent cognitive representations when all content

concepts were present in two-dimensional space (concept map) than when

pairs of content concepts were compared in isolation from the others (pairwise

comparisons). Those findings respond to the question concerning potential

differences between having the concepts simultaneously available for comparison

and considering pairs in isolation. Discussion When provided with a given

set of 12 mathematics-content concepts (e.g., commutativity, function,

distributive law), we predicted that the teachers having most extensive

mathematical training and experience (university mathematicians, mathematics-methods

professors, and high school teachers) would produce concept maps that evidenced

deep content knowledge of mathematics. Highest correlations occurred between

the maps of the university mathematicians and the mathematics-methods professors

and between the maps of the high school teachers and the mathematics-methods

professors. On the basis of Schroeder and Lester's (1989) findings, we

expected that the mathematics-methods professors' would be able to relate

given mathematical ideas to a variety of problem contexts and a given problem

to a great number of implicit ideas relative to the other participants.

That expectation was fulfilled. A counterintuitive finding, however, was

the superior performance of high school teachers over university mathematicians

in identifying mathematics-content concepts in a variety of contexts. Even

though middle and elementary school teachers lagged behind in their ability

to recognize embedded concepts, the public school teachers and the mathematics-methods

professors were consistent in their pedagogical reasoning and proposed

strategies for instruction. The mathematics-methods professors and their

experienced public school colleagues offered congruent pedagogical suggestions

for teaching Problems 1, 2, 3, 4, 6, and 7. On Problems 5 and 8, the mathematics-methods

professors, high school teachers, and elementary teachers proposed similar

teaching strategies. Thus, the mathematics-methods professors, high school

teachers, and elementary school teachers were in league on eight of the

nine problems, and those groups plus the middle school teachers were consonant

in their recommendations on six of the nine problems. The university mathematicians

joined this pattern only on Problems I and 6. 

[IMAGE ILLUSTRATION] Captioned as: FIGURE 2. 

[IMAGE TABLE] Captioned as: TABLE 4 

The university mathematicians' concept-map representations of content knowledge

were most highly correlated with those of mathematics-methods professors

(Task 1). The university mathematicians were behind the mathematicsmethods

professors and high school teachers in accuracy of identifying content

concepts in word problems (Task 2). And, as noted, they differed widely

from the mathematics-methods professors and public school teachers in teaching

recommendations (Task 3). In general, the public school teachers and mathematicsmethods

professors exemplified coherent pedagogical content knowledge (e.g., Ball,

1991; Fennema & Franke, 1992; Hiebert & Lefevre, 1986; Lampert, 1989; Shulman,

1986; 1987; Shulman & Quinlan, 1996). 

When questioned about how they would propose to teach each of those problems,

the elementary school teachers offered the greatest number of teaching

suggestions and confined their responses to applicability for the early

grades. The mathematics-methods professors offered suggestions that encompassed

the widest range of learners. The high school teachers had deep understanding

of content knowledge and could identify concepts in context; they assumed

a student-oriented stance to teaching (similar to that of the mathematics-methods

professors). The teaching suggestions of the mathematics-methods professors

and the public school teachers implied a conception of learning as active

process and teaching as facilitation of conceptual change (Prosser, Trigwell,

& Taylor, 1994). The university mathematicians were effective at organizing

important mathematical concepts, but they were not particularly accurate

at identifying the concepts in word problems. Their pedagogical knowledge

was less learner focused and more algorithmic than that of the other participants.

They appeared to characterize learning and teaching as didactic and unidirectional,

the transmission of information to passive learners (Prosser et al., 1994).

The validity of knowledge-structure representation techniques is an ongoing

question. With pathfinder analysis of coherence, we demonstrated the proposed

advantage of simultaneous arrangement of concepts in concept maps as opposed

to isolated paired comparisons. Even though the sample size in the present

investigation was small, there was no doubt that coherence based on triangular

logic was superior for concept maps. Although measuring distances between

concepts on a concept map with a ruler may be challenged as an untenable

representation of psychological distance, the participants were instructed

to arrange the concept discs to show the relationships they perceived:

"Put close together the ones you see as highly related. Put far apart the

ones that you think are not related." That instruction, coupled with standardization

of measured distances to allow comparison between different concept mappers,

should be at least as representative of psychological space as concept

comparisons rated on a numbered scale. Further research is warranted, however,

concerning the validity of that as well as other knowledge-structure metrics.

The NCTM (1989) standards stress the important concepts of mathematics

for students to learn. Reflective practitioners need links between subject-matter

concepts in the mathematics domain and pedagogical content knowledge. That

integration component of Shulman's ( 1987) model might be represented in

dual-purpose concept maps. The first purpose would be to elicit knowledge

structures from skilled, experienced, expert teachers of mathematics that

represent simultaneously the interrelationships of NCTM (1989) mathematics

content concepts and the interrelationships between content concepts and

optimal teaching concepts and strategies. This synthesis of knowledge structures

would represent a blueprint for success in mathematics teaching and learning.

The second purpose would be to use that blueprint as a template for preservice

and inservice education of mathematics teachers. The ultimate beneficiaries

would be students nationwide who master mathematics content and concept.
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