PROBLEM:
Answer the following questions about the time-domain response of FIR digital filters:

\[y[n] = \sum_{k=0}^{M} b_k \cdot x[n - k] \]

(a) When tested with an input signal that is an impulse, \(x[n] = \delta[n] \), the observed output from the filter is the signal \(h[n] \) shown below:

\[\delta[n] = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases} \]

Determine the filter coefficients \(\{b_k\} \) of the difference equation for the FIR filter.

(b) If the filter coefficients are \(\{b_k\} = \{13, -13, 13\} \) and the input signal is

\[x[n] = \begin{cases} 0 & \text{for } n \text{ even} \\ 1 & \text{for } n \text{ odd} \end{cases} \]

determine the output signal \(y[n] \) for all \(n \). Give your answer as either a plot or a formula.