PROBLEM:

The Fourier transform of a signal \(x(t) \) is shown in the following figure.

\(X(j\omega) \)

\(- j2\pi \)

\(-5\pi \)

\(-1.5\pi \)

0

1.5\pi

5\pi

\(4\pi(1-j) \)

\(4\pi(1+j) \)

\(2\pi \)

\(j2\pi \)

(a) Write an equation for \(x(t) \) in terms of \textit{cosine} functions.

(b) Suppose that \(x(t) \) is modulated by a cosine of frequency \(\omega_c = 2.5\pi \), and then lowpass filtered with a filter that has a frequency response

\[
H(j\omega) = \begin{cases}
1 & |\omega| \leq 2\pi \\
0 & \text{otherwise}
\end{cases}
\]

\[
x(t) \quad \xrightarrow{\text{modulation}} \quad w(t) \quad \xrightarrow{\text{LTI System}} \quad y(t)
\]

\[
\text{LTI System} \quad H(j\omega)
\]

\[
\cos(2.5\pi t)
\]

Make a plot of the Fourier transform of \(y(t) \).