SWEBOK Chapter 3
Software Design
This chapter begins by defining software design as both “the process of defining the architecture, components, interfaces, and other characteristic of a system or component and the result of that process.
Software design plays an important role in developing software—it allows engineers to produce various models that serve as a blueprint of the solution to be implemented.

· Evaluate models to determine if the solution will fulfill the system requirements.

· Examine and evaluate various alternative solutions and trade-offs.

· Plan subsequent development activities.

· Use the models as the starting point of the construction and testing phase.

Software design consists of two activities between software requirements analysis and software construction:
· Software architectural design—describe the software’s top-level structure and organization and identifying the various components.

· Software detailed design—describe each component sufficiently to allow for its construction.

Software design fundamentals include:

· General design concepts—goals, constraints, alternatives, representations, and solutions.

· Context of software design—part of the software engineering cycle.

· Software design process—two step process
Architectural design

Detailed design

· Enabling techniques—key notions considered fundamental to many different software design approaches and concepts.

Abstraction—forgetting information so that things that are different can be treated as if they were the same

Coupling and cohesion—the strength of the relationships between modules vs. how the elements within a module are related

Decomposition and modularization—placing different functionalities or responsibilities in different components

Encapsulation/information hiding—grouping and packaging the elements and internal details of an abstraction making those details inaccessible

Separation of interface and implementation—defining a component by specifying a public interface, know to the clients, separate from the details of how the component is realized

Sufficiency, completeness and primitiveness—ensuring that a software component captures all the important characteristics of an abstraction and nothing more

Key issues in software design include:
· Quality concerns that all software must address (such as performance, decomposition, organization, packaging)

· Aspects that affect the performance or semantics of the components in systemic ways:

Concurrency

Control and handling events

Distribution of components

Error an exception handling and fault tolerance

Interaction and presentation

Data persistence

Software structure and architecture describe the subsystems and components of a software system and the relationships between them and can make use of generic design ideas:

· Architectural structures and viewpoints—A view represents a partial aspect of a software architecture that shows specific properties of a software system. A software design is a multi-faceted artifact produced by the design process and generally composed of relatively independent and orthogonal views.

An architectural style is a set of constraints on an architecture that defines a set or family or architectures that satisfies them:

General structure

Distributed systems

Interactive systems

Adaptable systems

Others
· Design patterns—a common solution to a common problem in a given context
Creational patterns

Structural patterns

Behavioral patterns

· Families of programs and frameworks—identify the commonalities among members of families and use reusable and customizable components to account for variability among family members.
Software design quality analysis and evaluation includes:
· Quality attributes (“ilities” and “nesses”, run-time discernable vs. run-time not discernable vs. architecture’s intrinsic qualities)
· Quality analysis and evaluation techniques (software design reviews, static analysis, simulation and prototyping)
· Measures (function-oriented design measures, object-oriented design measures)
Software design notations exist to represent software design artifacts:

· Structural descriptions (static)
Architecture description languages

Class and object diagrams

Component diagrams

Class responsibility collaborator cards

Deployment diagrams

Entity-relationship diagrams

Interface description languages

Jackson structure diagrams

Structure charts

· Behavioral descriptions (dynamic)
Activity diagrams

Collaboration diagrams

Data flow diagrams

Decision tables and diagrams

Flowcharts and structured flowcharts

Sequence diagrams

State transition and state chart diagrams

Formal specification languages

Pseudocode and program design languages

Software design strategies and methods that help guide the design process.

· General strategies—divide and conquer, stepwise refinement, top-down vs. bottom-up strategies, data abstraction and information hiding, use of heuristics, use of patterns and pattern languages and the use of an iterative and incremental approach.

· Function-oriented design—decomposition focuses on identifying the major software functions and then elaborating and refining them in a top-down manner.

· Object oriented design

· Data-structure-centered design—starts from the data structures a program manipulates rather than from the function it performs.

· Component-based design—a software component is an independent unit, having well-defined interfaces and dependencies that can be composed and deployed independently.

· [image: image1.png]Software Design
3 ¥ <7 3 ¥ 3
i | et |] A ot | g |] S
The cantextof Conrol s banding. el Qualiy snatysis wnd Lple] Funcioo-oeiered
- Disisionol |+ (macmrcieert o siec rem—
It P R L ot

e | i [—
eS— o i i

re 1 Breskdown of topics for the Soflware Design KA

32 © [EEE - 2004 Version

Other methods

