Purdue University, Fort Wayne

ACS560

Academic Measurement and Achievement Mentor

Gloudemans-Schwartz

Software Design Description
Based on IEEE-1016
Revision History
	Date
	Version
	Description
	Author

	10/24/2011

	v0.0
	Empty template creation

	Monica Gloudemans

	10/26/2011
	v1.0
	Complete Introduction and System Overview of the SDD
	Ekaterina Schwartz
Monica Gloudemans

	11/04/2011
	v2.0
	Updated System Architecture, Data Design, and Component Design
	Monica Gloudemans
Ekaterina Schwartz

	11/14/2011
	v3.0
	Updated Class Diagrams, Component Diagram, Report and Tutorial Activity Diagrams
	Ekaterina Schwartz

Monica Gloudemans

Table of Contents
41.
Introduction

1.1
Purpose
4
1.2
Scope
4
1.3
References
4
1.4
Overview
4
1.5
Constraints
5
2.
System Overview
6
3.
System Architecture
13
3.1
Architectural Description
13
3.2
Component Decomposition Description
15
3.3
Architectural Alternatives
18
3.4
Design Rationale
18
4.
Data Design
18
4.1
Database Description
18
4.2
Global Data Structures
19
4.3
Object-use Description (New Section)
19
5.
Component Design
22
5.1
Component identifier
23
5.2
Purpose
23
5.3
Function
23
5.4
Subordinates
23
5.5
Dependencies
23
5.6
Interfaces
23
5.7
Data
23
6.
Human Interface Design
23
6.1
Overview of the User Interface
23
6.2
Screen Images
23
6.3
Screen Objects and Actions
23
6.4
Report Formats
23
7.
Requirements Matrix
24
8.
Resource Estimates
24
9.
Definitions, Acronyms and Abbreviations
24

1. Introduction
Provide an overview of the SDD and a description of the scope of the software.

Purpose
Define the purpose of this SDD and specify intended readership
The purpose of this document is to detail the software requirements related to the Academic Measurement and Achievement Mentor (AMAM). This document shall describe the purpose of the software along with its capabilities, interfaces, and user interactions. This document is intended for stakeholders, users and the designers of the system. It shall be proposed to the instructor for approval.

Scope
Identify the software products to be produced by name; explain what the proposed software will do (and not do, if necessary); describe the relevant benefits, objectives and goals as precisely as possible; and be consistent with related higher-level specifications.

The Academic Measurement and Achievement Mentor is a web-based application that assists students, parents and support persons in assessing and promoting a student’s mastery of the Indiana state academic standards. Students interact with the web-based Academic Measurement and Achievement Mentor, through an age-appropriate user interface. The application is accessible wherever an Internet connection is available. Upon registration, initial assessments are conducted in any or all of 4 basic subject areas: English/Language Arts, Mathematics, Social Studies, and Science. Student assessment results are kept confidential. Immediate feedback is provided through graphical and textual summaries that associate a proficiency rating with each academic standard. Tutorial resources are linked directly to standards for which the student has demonstrated deficiencies; enrichment resources are linked to standards which the student has mastered. Student assessment is ongoing and iterative with progressive achievement documented and displayed.

References
Provide a complete list of all the applicable and referenced documents.

Academic Measurement and Achievement Mentor, Software Requirements Specification version4.0, October 23, 2011
http://cmapspublic.ihmc.us/rid=1JYMLBN64-22S034X-1D7V/Elaboration%20Phase.cmap

Minimally, a reference to the SRS goes here. If you used any other types of documents to arrive at this design (the Somerville text, documents provided by the client), list them here.

Overview
Describe what the rest of the SDD contains and explain how the SDD is organized.

This Software Description Document depicts an object-oriented design for the Academic Measurement and Achievement Mentor (AMAM) application. It provides an overview of AMAM’s system and a description of its system architecture, data design, component design, human interface design, and requirements. Each of the descriptions listed above is detailed in a section of this document and supplemented with respective diagrams where applicable.
Constraints
Briefly describe any restrictions, limitations or constraints that impact the design or implementation
Following is a list of constraints that impact the design of the Academic Measurement and Achievement Mentor:
End-user environment

· End-user shall access the AMAM application through the Internet Explorer, Firefox, Google Chrome, Safari, or Opera internet browsers.

· End-user shall interact with the application via a computer terminal, laptop or tablet device running on a Windows 7, Mac OS or UNIX operating system.
· End-user shall access application’s video resources in MOV, WMV, or MPG format.
· End-User shall access application’s document resources in PDF format.
Availability or volatility of resources
· The AMAM shall be designed within the scope of the ACS560 course requirements and tools provided by course instructor.
· The AMAM design shall be completed by 12/13/2011.
Standards compliance

· The AMAM shall be designed to comply with W3C HTML 4.01 standard.

· The AMAM shall be designed to comply with TCP/IP standards.

· The AMAM shall be designed to comply with the HTTPS standard.
Interface/protocol requirements
· The AMAM shall provide secure user connection by following HTTPS protocol.
· AMAM’s web server shall interact with backend applications through application specific interfaces.
· Each of AMAM’s backend application shall access database through a database interface.
· AMAM’s web services components that provide payment shall interact with the system through the user account interface.
· AMAM’s web services component that provides persistent data storage shall interact with the system through the database interface.

Data repository and distribution requirements
· The AMAM shall store data in a secure database server.
· The AMAM shall implement a external persistent storage
Security requirements (or other such regulations)

· The AMAM shall implement Authorization, Authentication, and Session Management.
· The AMAM shall implement a secure database connection to a separate database server.

· The AMAM shall follow HTTPS protocol for browser-server communication.
Memory and other capacity limitations
· AMAM shall require end-user’s system with a minimum of 256MB RAM memory.
Performance requirements

· AMAM shall be available 24/7.
· AMAM shall operate over 1Mbps internet connection.

· AMAM shall support at least 1000 concurrent users making 6 page requests per minute.

· AMAM shall have a delay time between a user request and display of the requested resource shall be less than 1 second for 98% of transactions.
Network communications

· End-users will require at least 1Mbps speed secure internet connection to access the application stored on the system server.

· Web Application Server will require connection to access the secure databases.
2. System Overview

Briefly introduce the system context and design, and discuss the background to the project.

Put context diagram from SRS here to supplement the text.

High stakes testing, a practice in which the outcome on a standardized test is a determining factor in decisions regarding the student, is an area of great concern for both parents and students: underperforming students may be retained at the current grade level for an additional year. The Indiana Statewide Testing for Educational Progress (ISTEP) is administered yearly; however, the results of these tests are not immediately available. Failing test scores may be a parent’s first warning of a child’s deficiencies. Untimely results also permit students to be promoted to the next grade level without mastery of the requisite skills. Since results are not linked to the specific skills associated with each high-level standard, resources are spent reviewing skills for which a student is proficient, at the expense of standards for which the student is truly deficient and in need of remediation. The testing summaries provided by ISTEP are often difficult for parents to access and interpret and are clearly not created for student use. Classroom teachers are resources for remediation; however, with class sizes increasing and teachers responsible for large numbers of students, appropriate individualized attention may be difficult to obtain.

The Academic Measurement and Achievement Mentor is a web-based application that provides users with proactive tools to assess academic needs and improve student performance to meet mandated academic standards. The AMAM provides assessments that are iterative, feedback that is immediate and remediation that is targeted at specific standards. The application utilizes a database to store student progress information, user-account data, and remediation resources. A customized interface between commercial off-the-shelf e-assessment software and the web application server delivers real-time assessments linked to specific state standards. A report application provides graphical and easy to grasp summaries of student proficiencies and deficiencies linked to resources for enrichment or remediation.
A user (account holder) sets up an AMAM account by completing a registration that requires userID, password, name, and payment services. Once payment services have been completed, the account holder can add students to the account and subsequently modify student information. An Academic Measurement and Achievement Mentor account holder can have multiple students listed in his/her account. Once a student has completed an assessment, the reporting application can be invoked to view results and access remediation resources. Student assessment results are kept confidential. Account information is kept confidential as well.
Figure 1 is a high level use case diagram of the Academic Measurement and Achievement Mentor showing a collection of typical users and their possible interactions with the system. Not all users can engage in all interactions.

Figure 2 is a use case model of the user-account application from the perspective of a guardian.

Figure 3 is a use case model for a typical student-initiated session with the AMAM system. The session includes an assessment, a review of a report and use of the associated remediation resources.

Figure 4 is an activity diagram of a user setting up an AMAM account.

Figure 5 is an activity diagram of an AMAM test session, depicting account holder and student activities.
Figure 6 is an activity diagram of an AMAM report session, depicting account holder activities.

Figure 7 is an activity diagram of an AMAM tutorial session, depicting account holder activities.

[image: image1.png]High Level Use Case Diagram v2.0:
Academic Measurement and Achievement Mentor

AMAM
<o

ji
Lo

i e st e
Accountant

Content Manager

Figure 1 High Level User Diagram of AMAM
[image: image2.png]Use Case Diagram:

User-Account Application

quardian

<ncluder>

”
"

updateStudent

<cincludé>>

<cinciuge>

User-Account Application

Figure 2 Use Case Model: User-Account Application
[image: image3.png]Use Case Model:
Student Use v1.0

A

Student

Viewprogress) _ _ _; > ——.
\@ T Roaustreport
o oot
emetaton) <<t { romodaon
ey ey

Assessment-Reporting-Remediation

How
hivd

Figure 3 Use Case Model: AMAM Student Use
[image: image4.emf]Database Application User

Access AMAM web page

Select 'Create Account'

Enter First Name

Enter Last Name

AMAM User Account Set Up Activity Diagram

Enter user ID

Enter password

Submit form

[duplicate userID]

[unique userID]

check unique userID provide User data for user ID

invoke Payment Services

provide Payment information

create user account

update user data

submit payment Update account status update user data

Log out

Figure 4 User account set up activity diagram

[image: image5.emf]AMAM Student AccountHolder

Log In

[valid]

[[invalid]]

Select Student

Select Assessment

Provide Answer

Submit Test

Proceed to next question

[more questions]

[last question]

Request Results

View Results

Request Remediation Resources

Complete Remediation Activities

log out

AMAM Test Session Activity Diagram

Verify User

Create Account Holder Object

Provide Student Information

Provide Account Holder Information

Create Student Object

Select Subject

Create Test Session Object

Provide Question

Create Results

Update Response Record

Update User Data Database

Invoke Reporting Application for Report

Access Database for Resources

Figure 5 Test Session Activity Diagram

[image: image11.jpg]Report Session Activity Diagram

Guardian

Logon

il

Select Report Session

SelectReport TypeFormat

comprehensive]

i e

specific standard] Teomprehensive]

[C— s ot gt)

specificdates] Tcomprehensiv]

[

e report]

!

AMAM User Account
Application

e

Creste Stugent Objct

Provide student Information

|

|

AMAM Report Application

Figure 6 Report Session Activity Diagram To be added…

[image: image6.emf]AMAM Tutorial Application User

AMAM Tutorial Activity Diagram

Request Video Tutorial

Provide Requested Tutorial

View Tutorial

[done]

Proceed with AMAM

[needs support]

Request Support Information

Provide Support Information

Close Tutorial

Contact Support

[video]

Request Text Tutorial

[text]

Figure 7 Tutorial Session Activity Diagram
3. System Architecture
Architectural Description

Develop a modular program structure and explain the relationships between the modules to achieve the complete functionality of the system. This is a high level overview of how Software Design Document responsibilities of the system were partitioned and then assigned to subsystems. Identify each high level subsystem and the roles or responsibilities assigned to it. Describe how these subsystems collaborate with each other in order to achieve the desired functionality. Don’t go into too much detail about the individual subsystems. The main purpose is to gain a general understanding of how and why the system was decomposed, and how the individual parts work together. Provide a diagram showing the major subsystems and data repositories and their interconnections. Describe the diagram if required. Include a block diagram showing major subsystems and the interconnections

The AMAM architecture is composed of three major layers: the presentation layer, the application layer and the data layer. The application architecture is depicted in Figure 8. The presentation layer includes components related to the user interface. The user will access the system through a web browser that utilizes plug-in components to enhance the user experience. Authorization, authentication and session management will be provided through an application framework management system. Further development of this layer is not within the scope of this document. The presentation layer components interface with the application layer through an HTTPS interface.

The application layer includes a web server component and four application components: the tutorial application, the user account application, the assessment application, and the report application. All user requests are processed by the web server, which invokes the appropriate application through an application-specific interface to get the requested resource, dynamically builds a web page, and then delivers the web page to the presentation layer.

The tutorial application component provides basic documentation, videos, and animations related to the use of the AMAM application. The user-account application creates an account for a new user, maintains user preferences, usage data and proficiency profiles. The assessment application builds a test session that is individualized based on the user’s subject choice, standard choice and demonstrated proficiencies. The report application generates individualized reports including assessment results, resources linked to standards for which the individual requires remediation, and overall progress. All of these applications retrieve and update data as required from the system databases.

The data layer includes several databases which maintain user data, content for building standard-linked assessments, remediation and enrichment resources linked to standards. All application layer components interact with the databases through a dedicated database interface. A copy of all information stored in the databases is maintained on a persistent external storage as a backup. Further development of this layer is not within the scope of this document.

Web services used for content management and accounting services interact with the appropriate system databases directly through the database interface. Web services used for payment interact with the system through the user-account interface.

Security is maintained across all layers; further development of the details of security implementation is not within the scope of this document.

[image: image7.emf]
Figure 8 Application Architecture

Component Decomposition Description

Provide a decomposition of the subsystems in the architectural design. Supplement with text

as needed. You may choose to give a functional description or an objectoriented description.

For a functional description, put toplevel data flow diagram (DFD) and structural

decomposition diagrams. For an OO description, put subsystem model, object diagrams,

generalization hierarchy diagram(s) (if any), aggregation hierarchy diagram(s) (if any),

interface specifications, and sequence diagrams here.

Describe the decomposition of the subsystems that summarizes the software components.

Functional – Put data flow diagram (DFD) and structural decomposition diagram here.

OOD – Put object diagrams and aggregation chart here.

[image: image8.emf]

+connectUserData()

+updateUserData()

+retrieveUserData()

+deleteAccount()

+createAccount() : AccountHolder

+accessAccount() : AccountHolder

+closeAccount()

+paymentServices()

+getReceipt()

-verifyUniqueID()

-user[] : AccountHolder

User-Account

+insertStudent()

+selectStudent()

+updateStudent()

+setfName()

+getfName()

+setlName()

+getlName()

+getUsageProfile() : UsageProfile

+setUsageProfile()

+displayAccounting()

-fName

-lName

-userID

-student[]

-accounting : Accounting

-usageProfile : UsageProfile

AccountHolder

+getStatus()

+setStatus()

+addPaymentHistory()

+getPaymentHistory() : PaymentHistory

-status

-paymentHistoryArray : PaymentHistory

Accounting

Class Diagram:

User-Account Application

User-Data Database Interface

+addLog()

+removeLog()

+setLastUnsuccessfulAttempt()

+getLastUnsuccessfulAttempt()

-userLog[] : Logs

-lastUnsuccessfulAttempt

UsageProfile

+setLogInTime()

+getLogInTime()

+setLogOutTme()

+getLogOutTime()

-calculateDuration()

-logInTime

-logOutTime

-/duration

Logs

+createAccount() : AccountHolder

+accessAccount() : AccountHolder

+closeAccount()

+paymentServices()

+getReceipt()

+deleteAccount()

Web Services

User-Account Interface

User-Account Interface

1

*

1

1

1

*

1

1

1

*

1

*

+calculatePR()

+getScore()

+getSubject()

+retrievePR()

+setScore()

+setSubject()

-subject

-score

-subLevelArray : Proficiency Rating

Proficiency Rating

1

*

+addSessionData()

+getSessionData()

+addTest()

+getTest()

-session

-test

Assessment History

+getPRSummary()

+updatePRSummary()

+setFName()

+setLName()

+getFName()

+getLName()

+setGradeLevel()

+getGradeLevel()

+getAssessmentHistory()

+addAssessmentHistory()

-studentId

-assessmentHistoryArray : Assessment History

-proficiencyArray : ProficiencyRating

-firstName

-lastName

-gradeLevel

Student

+setBalance()

+getBalance()

+setPayment()

+getPayment()

+setDate()

+getDate()

-payment

-balance

-date

PaymentHistory

1

1

Figure 9 Class diagram and aggregation hierarchy: User-account application

[image: image12.jpg]Class Diagram:
Assessment Application

Teerton
S St
User-Data Database Interface. P:::"’;':;“ S |0 Assessement Application Interface
e
ey —
[tconnectUserDataf) Report Appkcatin et
(e
(i
Hrressesion)
FsenTesseson. Ts sson
Fimirerarson)
feneressssony
' I T) -
i 1 Test
o m
sy ety | o
oo b
ooy oncancs o
e e re sEo Sty s
e e ey e
e s S L it
[+setPRSummaryl) il toolkit - Toolkit
[yt previeresesiondatal [rconnectAssessmentoatal)
[[sretrieveTestitem()
oot o
etteney (et ke
|*getiNamel} i 1 calculator
[oreteng-sce
oo \
feetcradetewel) 2 ¢ provactor
[rethssessmentHistory() : S 1 1 graphinghid
[Rasisemenisond i
) k’ 5 ;\ . '
P g e sy 1
e e setona] [st e][R e
score st et bt remiD remiD corerorest
sublevelArray : Proficency Rating | [-aadSessionbatal standardiD standard userfiespanse | |scoreForstandardsrray - Score.
o) I e e L e e
Bl et s wsion | [S| e
sgetsubject)) rgetTestl) Ivaadstandard] answer
o) ety et
s e
e

Figure 10 Class diagram and aggregation hierarchy: Assessment Application

[image: image9.emf]Class Diagram:

Interfaces

+initiateTestSession()

+sendTestSession() : <unspecified>

+updateTestSession()

+endTestSession()

«interface»

Assessement Application Interface

+connectUserData()

+updateUserData()

+retrieveUserData()

«interface»

User-Data Database Interface

+connectAssessmentData()

+retrieveTestItem()

«interface»

Assessment Database Interface

+createReport()

+retrieveReport()

«interface»

Report Application Interface

+retrieveTutorial()

«interface»

Tutorial Interface

+connectResourceData()

+retrieveResourceData()

«interface»

Remediation Resource Database Interface

+createAccount()

+accessAccount() : <unspecified>

+closeAccount()

+paymentServices()

+getReceipt()

«interface»

User-Account Interface

Figure 11 Interface specification diagram

Architectural Alternatives

Discuss other architectures that were considered.

The 3-tier architecture is a well established model for web-based applications. Due to tight time constraints for the project and the project developers’ lack of experience with other models, alternate architectures were not explored in depth.

 Design Rationale

Discuss the rationale for selecting the architecture described in 3.1, including the critical issues and trade/offs that were considered. You may discuss other architectures that were considered, provided that you explain why you didn’t choose them.

A 3-tier architecture was chosen to facilitate upgrades to the system. The modular design allows individual components to be swapped in and out of the system independently of other layers and components. For the initial implementation of the AMAM system, commercial off-the-shelf components will be used for the report application and parts of the assessment application. These components are likely to be replaced or upgraded as assessment technologies improve.

4. Data Design
Explain how the information domain of your system is transformed into data structures.

Describe how the major data or system entities are stored, processed and organized. List any

databases or data storage items.

Database Description

Describe the database(s) which is/are part of the system.

The Academic Measurement and Achievement Mentor is to incorporate a database for storage and retrieval of user-data, assessments, and remediation resources. In addition, AMAM is to utilize an external persistent database for prevention against data loss.

The user-data database is to store account holder and student information. Account holder information consists of first and last name, user ID, usage information, accounting information, and student IDs associated with the account. Student information includes student’s first and last name, student ID, proficiency ratings, and test session data.

The assessment database is for the storage and retrieval of standards, standard links, ratings, questions, and answers.
The remediation resource database is for the storage and retrieval of documents, videos, and links to educational remediation resources.
Global Data Structures

Describe any data structures that are a major part of this system.

This should include major data structures that are passed between components. That is, it is not restricted to truly “global” data structures.

The data structures that are part of the AMAM are the Test Session object, User-Account object, Report object, and Tutorial object, as depicted in figures 9 and 10.
The data structure utilized by the user-account and assessment application is the predetermined in size array of objects. Following is a list of the classes for each application that utilizes the array data structure:

User-account application

· User-Account class - array of Account Holder objects

· Account Holder class - array of Student objects

· Usage Profile class- array of Logs objects

· Student class- array of Proficiency Rating objects

· Student class- array of Assessment History objects

· Accounting Class- array of Payment History objects

Assessment Application
· Student class- array of Proficiency Rating objects

· Student class- array of Assessment History objects

· Test class- array of Standard objects
· Test class- array of Item objects

· Test class- array of Response objects

· Proficiency Rating class- array of Proficiency Rating objects
Object-use Description (New Section)

Functional – Put data dictionary here and call the section Data Dictionary. Refer the reader to the structural decomposition diagram in Section 3.2.

If you provided an OO description, list the objects and its attributes, methods and method parameters.

OOD – Put object-use description diagrams here and call the section Object-use Description Diagrams. Refer the reader to the object diagrams in Section 3.2.

Within the scope of the ACS560 course work, this section pertains to the assessment and user-account applications of the Academic Measurement and Achievement Mentor.

Assessment Application
The assessment application implements the following classes as depicted in Figure 8:

· Test Session

The Test Session class includes the private attributes student, sessionData, test, and results, which reference the corresponding objects. The class implements public methods to connect to user-data database, to update user-data in the database, to retrieve user-data from the database, to initiate a test session, to send a test session to the web application server, to update a test session, and to end the test session.

· Student

The Student class includes private attributes studentId, proficiencyArray of proficiency rating objects, assessmentHistoryArray of assessment history objects, lastName, and gradeLevel. The class implements public methods to get assessment history objects, to get proficiency rating, to update proficiency rating of student, to set/get student’s first and last name, and to set/get student’s grade level.

· Assessment History

The Assessment History class includes the private attributes test and sessionDatasubject. The class implements public methods to set/get test and set/get sessionData.
· Proficiency Rating

The Proficiency Rating class includes the private attributes subject, score, and subLevelArray Proficiency Rating objects. The class implements public methods to calculate proficiency rating, to retrieve proficiency rating, to set/get subject, and to set/get score.
· Session Data

The Session Data class includes private attributes sessionID, date, startTime, and stopTime. The class implements the public method to retrieve session data.
· Test

The Test class includes private attributes testID, subject, standardArray of Standard objects, itemArray of Item objects, responseArray of Response objects, score, and toolkit. The class implements public methods to connect to the assessment database, to retrieve test items from the database, to create a test, to post responses to the test, and to score the test.
· Standard

The Standard class includes private attributes subject, standardID, description, and reference. The class implements public methods to add standards and to retrieve standards.

· Item

The Item class includes private attributes itemID, standard, diffucultyRating, question, and answer. The class implements public methods to create an item and to retrieve the item.
· Toolkit

The Toolkit class includes private attributes calculator, ruler, protractor, and graphingAid. The class implements a public method to add the tool kit to the calling class.

· Response

The Response class includes private attributes itemID and userResponse. The class implements public methods to get/set Response.

· Score
The Score class includes private attributes scoreForTest and scoreForStandards. The class implements public method to retrieve scores.

User-Account Application
The user-account application implements the following classes as depicted in Figure 7:
· User-Account

The User-Account class includes private attribute user [] (array) of Account Holder objects. The class implements public methods to create an account, access an account, close an account, delete an account, invoke payment services, get a receipt from payment services, connect to user-data database, update the user-data database, and retrieve user-data from the database. In addition, the class implements a private method to ensure that upon setting up an account, the user has selected a unique ID.

· Account Holder

The Account Holder class includes private attributes first name, last name, user id, student [] (array) of student objects, and accounting. The attribute accounting references an Accounting object. The class implements public methods to insert student into student array, to update student information, to set/get student’s first name, and to set/get student’s last name.
· Accounting

The Accounting class includes private attributes status and payment History Array of payment history objects. The class implements public methods to set/get the status and to add/get Payment History object.

· Payment History

The Payment History class includes private attributes payment, balance, and date. The class implements public methods to set/get Balance, set/get Payment, and set/get Date.

· Student

The Student class includes private attributes studentId, proficiencyArray of proficiency rating objects, assessmentHistoryArray of assessment history objects, lastName, and gradeLevel. The class implements public methods to get assessment history objects, to get proficiency rating, to update proficiency rating of student, to set/get student’s first and last name, and to set/get student’s grade level.

· Assessment History

The Assessment History class includes the private attributes test and sessionDatasubject. The class implements public methods to set/get test and set/get sessionData.
· Proficiency Rating

The Proficiency Rating class includes the private attributes subject, score, and subLevelArray of Proficiency Rating objects. The class implements public methods to calculate proficiency rating, to retrieve proficiency rating, to set/get subject, and to set/get score.

· UsageProfile

The UsageProfile class includes the private attributes userLog[] (array) of Logs objects and lastUnsuccessfulAttempt which references the date and time of the last failed login attempt. The class implements public methods to add and remove a Logs object to/from the userLog array and to set/get the last unsuccessful attempt to login.
· Logs

The Logs class includes private attributes logInTIme, logOutTime, and duration which references the calculated duration of the user’s logs. The class implements public methods to set/get log in and log out times and a private method to calculate the session duration.
5. Component Design

In this section, we take a closer look at what each component does in a more systematic way. If Software Design Document you gave a functional description in section 3.2, provide a summary of your algorithm for each function listed in 3.2 in procedural description language (PDL) or pseudocode. If you gave an

OO description, summarize each object member function for all the objects listed in 3.2 in PDL or pseudocode. Describe any local data when necessary.

[image: image10.emf]AMAM Component Diagram

HTTPS

Interface

Web Server Web Browser

Assessment

Application

Assessment

Application

Interface

Tutorial

Application

Tutorial

Application

Interface

User Account

Application

User Account

Application

Interface

Payment Service

Report Application

Report

Application

Interface Remediation

Resource Database

Assessment

Database

User Data

Database

Content

Management

Service

Accounting Service

Database

Interface

Database

Interface

Database

Interface

Database

Interface

User Account

Application

Interface

Database

Interface

Database

Interface

Database

Interface

Session Manager

Authentication

Manager

Authorization

Manager

Video

Plug-In

Document

Reader Plug-In

External

Persistent Data

Storage

Fire Wall

Figure 12: AMAM high level component diagram

Include a top-down description of the design components.
Functional – Put the function mini-specs (PDL descriptions) here. Relate them to the structural decomposition diagram in Section 3.2.

OOD – Put the PDL for the object member functions here. Relate them to the object diagrams in Section 3.2.

You may want to reorganize this section (5.1 – 5.7) to make it flow better. That is fine as long as all of the information below is presented in some manner.
 Component identifier

Assign a unique identifier for use throughout the SDD.

Purpose

A reference back to the requirements spec.

Function

What does the component do? Describe its processing.

Subordinates

The components used by this component.

Dependencies

Constraints placed on this component by other components.

Interfaces

Control and data flow into and out of the component.

Data

Descriptions of internal data
6. Human Interface Design
Overview of the User Interface

Describe the functionality of the system from the user’s perspective. Explain how the user will be able to use your system to complete all the expected features and the feedback information that will be displayed for the user.

Describe the general functionality of the system from the user’s perspective.

Screen Images

Display screenshots showing the interface from the user’s perspective. These can be handdrawn

or you can use an automated drawing tool. Just make them as accurate as possible.

(Graph paper works well.)

Include screenshots showing the interface from the user’s perspective.

Screen Objects and Actions

A discussion of screen objects and actions associated with those objects.

Report Formats

Include a description of major reports provided by the system.

Commercial –off-the-shelf software will be used to provide the report features of the AMAM. The format of the reports will be dependent on the features of the report software which has not been selected at present. In general, the types of reports the AMAM will provide include…TBD

7. Requirements Matrix

Provide a cross reference that traces components and data structures to the requirements.
Use a tabular format to show which system components satisfy each of the functional requirements from the SRS. Refer to the functional requirements by the numbers/codes that you gave them in the SRS.
8. Resource Estimates

Computer resource estimates are beyond the scope of this project as defined by the course requirements for ACS 560.
9. Definitions, Acronyms and Abbreviations
Provide definitions of all terms, acronyms and abbreviations needed for the SDD.

	Term
	Definition

	ACS
	Applied Computer Science

	Adaptive test
	A test that successively selects questions so as to maximize the precision of the exam based on what is known about the examinee from previous questions.

	AMAM
	Academic Measurement and Achievement Tool

	Assessment application
	A component of the AMAM which builds e-assessments.

	Content management
	The set of processes and technologies that support the collection and management of the remediation resources, academic standards and assessment item bank.

	e-Assessment
	The use of computers and computer software to evaluate skills and knowledge in a certain area. For the AMAM, e- Assessment consists primarily of on-screen testing systems.

	Indiana State Academic Standards
	Standards outline what students should know and be able to do at each grade level as defined by the Indiana Department of Education.

http://dc.doe.in.gov/Standards/AcademicStandards/PrintLibrary/index.shtml

	ISTEP
	Indiana Statewide Testing for Educational Progress

	Item bank
	A collection of test questions and answers.

	Plug-in
	A set of software components that adds specific abilities to a larger software application enabling the customization of the functionality of an application.

	Proficiency profile
	A numerical snapshot of a student’s strengths and weaknesses for each skill in the Indiana academic state standards.

	Remediation resource
	A web-link to a video, tutorial, game, or instructional activity that aims to improve a student’s mastery of an academic standard.

	Report application
	A component of the AMAM which creates summary reports.

	SDD
	Software Description Document

	SRS
	Software Requirements Specification

	User
	Student, parent or support staff or any other person who interacts with the AMAM.

	User-account application
	A component of the AMAM which builds user accounts.

	WAS
	Web application server which utilizes the AMAM application components to build rich, user-specific web pages.

	Web browser
	 A web browser is a program designed to enable users to access, retrieve and view documents and other resources on the Internet.

