Purdue University, Fort Wayne

ACS560

Academic Measurement and Achievement Mentor

Gloudemans-Schwartz

Software Design Description
Based on IEEE-1016
Revision History
	Date
	Version
	Description
	Author

	10/24/2011

	v0.0
	Empty template creation

	Monica Gloudemans

	10/26/2011
	v1.0
	Complete Introduction and System Overview of the SDD
	Ekaterina Schwartz
Monica Gloudemans

	11/04/2011
	v2.0
	Updated System Architecture, Data Design, and Component Design
	Monica Gloudemans
Ekaterina Schwartz

	11/14/2011
	v3.0
	Updated Class Diagrams, Component Diagram, Report and Tutorial Activity Diagrams
	Ekaterina Schwartz

Monica Gloudemans

	11/15/2011
	v4.0
	Complete Component Design, Human Interface Design, Requirements Matrix sections
	Ekaterina Schwartz
Monica Gloudemans

	11/23/2011
	v5.0
	System Overview Use Case addition

	Ekaterina Schwartz

Monica Gloudemans

Table of Contents
51.
Introduction

1.1
Purpose
5
1.2
Scope
5
1.3
References
5
1.4
Overview
5
1.5
Constraints
5
2.
System Overview
7
3.
System Architecture
15
3.1
Architectural Description
15
3.2
Component Decomposition Description
17
3.3
Architectural Alternatives
19
3.4
Design Rationale
19
4.
Data Design
19
4.1
Database Description
19
4.2
Global Data Structures
20
4.3
Object-use Description
20
5.
Component Design
24
5.1
Component identifier
25
5.2
Tutorial Application Component (C9)
26
5.2.1
Purpose
26
5.2.2
Function
26
5.2.3
Subordinates
26
5.2.4
Dependencies
26
5.2.5
Interfaces
26
5.2.6
Data
26
5.3
User-Account Application Component (C11)
26
5.3.1
Purpose
26
5.3.2
Function
27
5.3.3
Subordinates
28
5.3.4
Dependencies
28
5.3.5
Interfaces
28
5.3.6
Data
28
5.4
Report Application Component (C12)
30
5.4.1
Purpose
30
5.4.2
Function
30
5.4.3
Subordinates
31
5.4.4
Dependencies
31
5.4.5
Interfaces
31
5.4.6
Data
31
5.5
Assessment Application Component (C10)
31
5.5.1
Purpose
31
5.5.2
Function
31
5.5.3
Subordinates
35
5.5.4
Dependencies
36
5.5.5
Interfaces
36
5.5.6
Data
36
6.
Human Interface Design
36
6.1
Overview of the User Interface
36
6.2
Screen Images
36
6.3
Screen Objects and Actions
36
6.4
Report Formats
36
7.
Requirements Matrix
37
8.
Resource Estimates
40
9.
Definitions, Acronyms and Abbreviations
40

1. Introduction
1.1 Purpose
The purpose of this document is to detail the software requirements related to the Academic Measurement and Achievement Mentor (AMAM). This document shall describe the purpose of the software along with its capabilities, interfaces, and user interactions. This document is intended for stakeholders, users and the designers of the system. It shall be proposed to the instructor for approval.

1.2 Scope
The Academic Measurement and Achievement Mentor is a web-based application that assists students, parents and support persons in assessing and promoting a student’s mastery of the Indiana state academic standards. Students interact with the web-based Academic Measurement and Achievement Mentor, through an age-appropriate user interface. The application is accessible wherever an Internet connection is available. Upon registration, initial assessments are conducted in any or all of 4 basic subject areas: English/Language Arts, Mathematics, Social Studies, and Science. Student assessment results are kept confidential. Immediate feedback is provided through graphical and textual summaries that associate a proficiency rating with each academic standard. Tutorial resources are linked directly to standards for which the student has demonstrated deficiencies; enrichment resources are linked to standards which the student has mastered. Student assessment is ongoing and iterative with progressive achievement documented and displayed.

1.3 References
Academic Measurement and Achievement Mentor, Software Requirements Specification version4.0, October 23, 2011
http://cmapspublic.ihmc.us/rid=1JYMLBN64-22S034X-1D7V/Elaboration%20Phase.cmap

1.4 Overview
This Software Description Document depicts an object-oriented design for the Academic Measurement and Achievement Mentor (AMAM) application. It provides an overview of AMAM’s system and a description of its system architecture, data design, component design, human interface design, and requirements. Each of the descriptions listed above is detailed in a section of this document and supplemented with respective diagrams where applicable.
1.5 Constraints
Following is a list of constraints that impact the design of the Academic Measurement and Achievement Mentor:
End-user environment

· End-user shall access the AMAM application through the Internet Explorer, Firefox, Google Chrome, Safari, or Opera internet browsers.

· End-user shall interact with the application via a computer terminal, laptop or tablet device running on a Windows 7, Mac OS or UNIX operating system.
· End-user shall access application’s video resources in MOV, WMV, or MPG format.
· End-User shall access application’s document resources in PDF format.
Availability or volatility of resources
· The AMAM shall be designed within the scope of the ACS560 course requirements and tools provided by course instructor.
· The AMAM design shall be completed by 12/13/2011.
Standards compliance

· The AMAM shall be designed to comply with W3C HTML 4.01 standard.

· The AMAM shall be designed to comply with TCP/IP standards.

· The AMAM shall be designed to comply with the HTTPS standard.
Interface/protocol requirements
· The AMAM shall provide secure user connection by following HTTPS protocol.
· AMAM’s web server shall interact with backend applications through application specific interfaces.
· Each of AMAM’s backend application shall access database through a database interface.
· AMAM’s web services components that provide payment shall interact with the system through the user account interface.
· AMAM’s web services component that provides persistent data storage shall interact with the system through the database interface.

Data repository and distribution requirements
· The AMAM shall store data in a secure database server.
· The AMAM shall implement a external persistent storage
Security requirements (or other such regulations)

· The AMAM shall implement Authorization, Authentication, and Session Management.
· The AMAM shall implement a secure database connection to a separate database server.

· The AMAM shall follow HTTPS protocol for browser-server communication.
Memory and other capacity limitations
· AMAM shall require end-user’s system with a minimum of 256MB RAM memory.
Performance requirements

· AMAM shall be available 24/7.
· AMAM shall operate over 1Mbps internet connection.

· AMAM shall support at least 1000 concurrent users making 6 page requests per minute.

· AMAM shall have a delay time between a user request and display of the requested resource shall be less than 1 second for 98% of transactions.
Network communications

· End-users will require at least 1Mbps speed secure internet connection to access the application stored on the system server.

· Web Application Server will require connection to access the secure databases.
2. System Overview

High stakes testing, a practice in which the outcome on a standardized test is a determining factor in decisions regarding the student, is an area of great concern for both parents and students: underperforming students may be retained at the current grade level for an additional year. The Indiana Statewide Testing for Educational Progress (ISTEP) is administered yearly; however, the results of these tests are not immediately available. Failing test scores may be a parent’s first warning of a child’s deficiencies. Untimely results also permit students to be promoted to the next grade level without mastery of the requisite skills. Since results are not linked to the specific skills associated with each high-level standard, resources are spent reviewing skills for which a student is proficient, at the expense of standards for which the student is truly deficient and in need of remediation. The testing summaries provided by ISTEP are often difficult for parents to access and interpret and are clearly not created for student use. Classroom teachers are resources for remediation; however, with class sizes increasing and teachers responsible for large numbers of students, appropriate individualized attention may be difficult to obtain.

The Academic Measurement and Achievement Mentor is a web-based application that provides users with proactive tools to assess academic needs and improve student performance to meet mandated academic standards. The AMAM provides assessments that are iterative, feedback that is immediate and remediation that is targeted at specific standards. The application utilizes a database to store student progress information, user-account data, and remediation resources. A customized interface between commercial off-the-shelf e-assessment software and the web application server delivers real-time assessments linked to specific state standards. A report application provides graphical and easy to grasp summaries of student proficiencies and deficiencies linked to resources for enrichment or remediation.
A user (account holder) sets up an AMAM account by completing a registration that requires userID, password, name, and payment services. Once payment services have been completed, the account holder can add students to the account and subsequently modify student information. An Academic Measurement and Achievement Mentor account holder can have multiple students listed in his/her account. Once a student has completed an assessment, the reporting application can be invoked to view results and access remediation resources. Student assessment results are kept confidential. Account information is kept confidential as well.
Figure 1 is a high level use case diagram of the Academic Measurement and Achievement Mentor showing a collection of typical users and their possible interactions with the system. Not all users can engage in all interactions.

[image: image9.jpg]Report Session Activity Diagram

Guardian

Logon

il

Select Report Session

SelectReport TypeFormat

comprehensive]

i e

specific standard] Teomprehensive]

[C— s ot gt)

specificdates] Tcomprehensiv]

[

e report]

!

AMAM User Account
Application

e

Creste Stugent Objct

Provide student Information

|

|

AMAM Report Application

Figure 1 High Level User Diagram of AMAM

Figure 2 is a use case model of the user-account application from the perspective of a guardian.
Figure 3 is a use case model for a typical student-initiated session with the AMAM system. The session includes an assessment, a review of a report and use of the associated remediation resources.

Figure 4 is a use case model for taking an assessment, which includes selecting the student to take the assessment, selecting the subject, viewing and answering questions, submitting responses, and viewing results. Taking an initial assessment extends taking an assessment.
[image: image10.emf]+connectUserData()

+updateUserData()

+retrieveUserData()

+deleteAccount()

+createAccount() : AccountHolder

+accessAccount() : AccountHolder

+closeAccount()

+paymentServices()

+getReceipt()

-verifyUniqueID()

-user[] : AccountHolder

User-Account

+insertStudent()

+selectStudent()

+updateStudent()

+setfName()

+getfName()

+setlName()

+getlName()

+getUsageProfile() : UsageProfile

+setUsageProfile()

+displayAccounting()

-fName

-lName

-userID

-student[]

-accounting : Accounting

-usageProfile : UsageProfile

AccountHolder

+getStatus()

+setStatus()

+addPaymentHistory()

+getPaymentHistory() : PaymentHistory

-status

-paymentHistoryArray : PaymentHistory

Accounting

Class Diagram:

User-Account Application

User-Data Database Interface

+addLog()

+removeLog()

+setLastUnsuccessfulAttempt()

+getLastUnsuccessfulAttempt()

-userLog[] : Logs

-lastUnsuccessfulAttempt

UsageProfile

+setLogInTime()

+getLogInTime()

+setLogOutTme()

+getLogOutTime()

-calculateDuration()

-logInTime

-logOutTime

-/duration

Logs

+createAccount() : AccountHolder

+accessAccount() : AccountHolder

+closeAccount()

+paymentServices()

+getReceipt()

+deleteAccount()

Web Services

User-Account Interface

User-Account Interface

1

*

1

1

1

*

1

1

1

*

1

*

+calculatePR()

+getScore()

+getSubject()

+retrievePR()

+setScore()

+setSubject()

-subject

-score

-subLevelArray : Proficiency Rating

Proficiency Rating

1

*

+addSessionData()

+getSessionData()

+addTest()

+getTest()

-session

-test

Assessment History

+getPRSummary()

+updatePRSummary()

+setFName()

+setLName()

+getFName()

+getLName()

+setGradeLevel()

+getGradeLevel()

+getAssessmentHistory()

+addAssessmentHistory()

+getStudentId()

-studentId

-assessmentHistoryArray : Assessment History

-proficiencyArray : ProficiencyRating

-firstName

-lastName

-gradeLevel

Student

+setBalance()

+getBalance()

+setPayment()

+getPayment()

+setDate()

+getDate()

-payment

-balance

-date

PaymentHistory

1

*

Figure 2 Use Case Model: User-Account Application
[image: image1.png]Use Case Model:
Student Use v1.0

A

Student

Viewprogress) _ _ _; > ——.
\@ T Roaustreport
o oot
emetaton) <<t { romodaon
ey ey

Assessment-Reporting-Remediation

How
hivd

Figure 3 Use Case Model: AMAM Student Use
[image: image2.emf]Take assessment

Prior to constructing a test

«extends»

Take an initial

assessment

«uses»

Select Student Choose subject

Submit response

Answer question

«uses»

View question

View test results

«uses»

«uses»

«uses»

«uses»

Use Case Model:

Take an assessment

Figure 4 Use Case Model: Take an assessment
Figure 5 is an activity diagram of a user setting up an AMAM account.

Figure 6 is an activity diagram of an AMAM test session, depicting account holder and student activities.

Figure 7 is an activity diagram of an AMAM report session, depicting account holder activities.

Figure 8 is an activity diagram of an AMAM tutorial session, depicting account holder activities.

[image: image3.emf]Database Application User

Access AMAM web page

Select 'Create Account'

Enter First Name

Enter Last Name

AMAM User Account Set Up Activity Diagram

Enter user ID

Enter password

Submit form

[duplicate userID]

[unique userID]

check unique userID provide User data for user ID

invoke Payment Services

provide Payment information

create user account

update user data

submit payment Update account status update user data

Log out

Figure 5 User account set up activity diagram

[image: image11.emf]+createReport()

+retrieveReport()

+connectUserData()

+updateUserData()

+retrieveUserData()

+initiateTestSession()

+sendTestSession() : Test Session

+updateTestSession()

+endTestSession()

-student : Student

-sessionData : Session Data

-test : Test

Test Session

+connectAssessmentData()

+retrieveTestItem()

+createTest()

+postResponses()

+scoreTest() : Score

-testID

-subject

-standardArray : Standard

-itemArray : Item

-responseArray : Response

-score : Score

-toolkit : Toolkit

Test

+retrieveScore()

+scoreItem()

-scoreForTest

-scoreForStandardsArray : Score

Score

+retrieveSessionData()

+getSessionID()

+setStartTime()

+getStartTime()

+setStopTime()

+getStopTime()

-sessionID

-date

-startTime

-stopTime

Session Data

+calculatePR()

+getScore()

+getSubject()

+retrievePR()

+setScore()

+setSubject()

-subject

-score

-subLevelArray : Proficiency Rating

Proficiency Rating

+addStandard()

+retrieveStandard()

-subject

-standardID

-description

-reference

Standard

+createItem()

+retrieveItem()

-itemID

-standard

-difficultyRating

-question

-answer

Item

+getResponse()

+setResponse()

-itemID

-userResponse

Response

+addToolkit()

-calculator

-ruler

-protractor

-graphingAid

-dictionary

-thesaurus

Toolkit

+getPRSummary()

+updatePRSummary()

+setFName()

+setLName()

+getFName()

+getLName()

+setGradeLevel()

+getGradeLevel()

+getAssessmentHistory()

+addAssessmentHistory()

+getStudentId()

-studentId

-assessmentHistoryArray : Assessment History

-proficiencyArray : Proficiency Rating

-firstName

-lastName

-gradeLevel

Student

Class Diagram:

Assessment Application

Assessement Application Interface User-Data Database Interface

Assessment Database Interface

Report Application Interface

1 1

1

1

1

*

1

1

1

*

1

*

1

*

1

1

+addSessionData()

+getSessionData()

+addTest()

+getTest()

-session : Session Data

-test : Test

Assessment History

1

*

1 1

Figure 6 Test Session Activity Diagram

[image: image12.png]High Level Use Case Diagram v2.0:
Academic Measurement and Achievement Mentor

AMAM
<o

ji
Lo

i e st e
Accountant

Content Manager

Figure 7 Report Session Activity Diagram

[image: image13.png]Use Case Diagram:

User-Account Application

quardian

<ncluder>

”
"

updateStudent

<cincludé>>

<cinciuge>

User-Account Application

Figure 8 Tutorial Session Activity Diagram
3. System Architecture
3.1 Architectural Description

The AMAM architecture is composed of three major layers: the presentation layer, the application layer and the data layer. The application architecture is depicted in Figure 9. The presentation layer includes components related to the user interface. The user will access the system through a web browser that utilizes plug-in components to enhance the user experience. Authorization, authentication and session management will be provided through an application framework management system. Further development of this layer is not within the scope of this document. The presentation layer components interface with the application layer through an HTTPS interface.

The application layer includes a web server component and four application components: the tutorial application, the user account application, the assessment application, and the report application. All user requests are processed by the web server, which invokes the appropriate application through an application-specific interface to get the requested resource, dynamically builds a web page, and then delivers the web page to the presentation layer.

The tutorial application component provides basic documentation, videos, and animations related to the use of the AMAM application. The user-account application creates an account for a new user, maintains user preferences, usage data and proficiency profiles. The assessment application builds a test session that is individualized based on the user’s subject choice, standard choice and demonstrated proficiencies. The report application generates individualized reports including assessment results, resources linked to standards for which the individual requires remediation, and overall progress. All of these applications retrieve and update data as required from the system databases.

The data layer includes several databases which maintain user data, content for building standard-linked assessments, remediation and enrichment resources linked to standards. All application layer components interact with the databases through a dedicated database interface. A copy of all information stored in the databases is maintained on a persistent external storage as a backup. Further development of this layer is not within the scope of this document.

Web services used for content management and accounting services interact with the appropriate system databases directly through the database interface. Web services used for payment interact with the system through the user-account interface.

Security is maintained across all layers; further development of the details of security implementation is not within the scope of this document.

[image: image4.emf]
Figure 9 Application Architecture

3.2 Component Decomposition Description

[image: image14.emf]AMAM Student AccountHolder

Log In

[valid]

[[invalid]]

Select Student

Select Assessment

Provide Answer

Submit Test

Proceed to next question

[more questions]

[last question]

Request Results

View Results

Request Remediation Resources

Complete Remediation Activities

log out

AMAM Test Session Activity Diagram

Verify User

Create Account Holder Object

Provide Student Information

Provide Account Holder Information

Create Student Object

Select Subject

Create Test Session Object

Provide Question

Create Results

Update Response Record

Update User Data Database

Invoke Reporting Application for Report

Access Database for Resources

Figure 10 Class diagram and aggregation hierarchy: User-account application

[image: image15.emf]AMAM Tutorial Application User

AMAM Tutorial Activity Diagram

Request Video Tutorial

Provide Requested Tutorial

View Tutorial

[done]

Proceed with AMAM

[needs support]

Request Support Information

Provide Support Information

Close Tutorial

Contact Support

[video]

Request Text Tutorial

[text]

Figure 11 Class diagram and aggregation hierarchy: Assessment Application

[image: image5.emf]Class Diagram:

Interfaces

+initiateTestSession()

+sendTestSession() : <unspecified>

+updateTestSession()

+endTestSession()

«interface»

Assessement Application Interface

+connectUserData()

+updateUserData()

+retrieveUserData()

«interface»

User-Data Database Interface

+connectAssessmentData()

+retrieveTestItem()

«interface»

Assessment Database Interface

+createReport()

+retrieveReport()

«interface»

Report Application Interface

+retrieveTutorial()

«interface»

Tutorial Interface

+connectResourceData()

+retrieveResourceData()

«interface»

Remediation Resource Database Interface

+createAccount()

+accessAccount() : <unspecified>

+closeAccount()

+paymentServices()

+getReceipt()

«interface»

User-Account Interface

Figure 12 Interface specification diagram

3.3 Architectural Alternatives

The 3-tier architecture is a well established model for web-based applications. Due to tight time constraints for the project and the project developers’ lack of experience with other models, alternate architectures were not explored in depth.

3.4 Design Rationale

A 3-tier architecture was chosen to facilitate upgrades to the system. The modular design allows individual components to be swapped in and out of the system independently of other layers and components. For the initial implementation of the AMAM system, commercial off-the-shelf components will be used for the report application and parts of the assessment application. These components are likely to be replaced or upgraded as assessment technologies improve.

4. Data Design
4.1 Database Description

The Academic Measurement and Achievement Mentor is to incorporate a database for storage and retrieval of user-data, assessments, and remediation resources. In addition, AMAM is to utilize an external persistent database for prevention against data loss.

The user-data database is to store account holder and student information. Account holder information consists of first and last name, user ID, usage information, accounting information, and student IDs associated with the account. Student information includes student’s first and last name, student ID, proficiency ratings, and test session data.

The assessment database is for the storage and retrieval of standards, standard links, ratings, questions, and answers.
The remediation resource database is for the storage and retrieval of documents, videos, and links to educational remediation resources.
4.2 Global Data Structures

The data structures that are part of the AMAM are the Test Session object, User-Account object, Report object, and Tutorial object, as depicted in figures 10 and 11.
The data structure utilized by the user-account and assessment application is the predetermined in size array of objects. Following is a list of the classes for each application that utilizes the array data structure:

User-account application

· User-Account class - array of Account Holder objects

· Account Holder class - array of Student objects

· Usage Profile class- array of Logs objects

· Student class- array of Proficiency Rating objects

· Student class- array of Assessment History objects

· Accounting Class- array of Payment History objects

Assessment Application
· Student class- array of Proficiency Rating objects

· Student class- array of Assessment History objects

· Test class- array of Standard objects
· Test class- array of Item objects

· Test class- array of Response objects

· Proficiency Rating class- array of Proficiency Rating objects
4.3 Object-use Description

Within the scope of the ACS560 course work, this section pertains to the assessment and user-account applications of the Academic Measurement and Achievement Mentor.

Assessment Application
The assessment application implements the following classes as depicted in Figure 11:

· Test Session

The Test Session class includes the private attributes student, sessionData, test, and results, which reference the corresponding objects. The class implements public methods to connect to user-data database, to update user-data in the database, to retrieve user-data from the database, to initiate a test session, to send a test session to the web application server, to update a test session, and to end the test session.
· Student
The Student class includes private attributes studentId, proficiencyArray of proficiency rating objects, assessmentHistoryArray of assessment history objects, lastName, and gradeLevel. The class implements public methods to get assessment history objects, to get proficiency rating, to update proficiency rating of student, to set/get student’s first and last name, to set/get student’s grade level, and to get student Id.

· Assessment History

The Assessment History class includes the private attributes test and sessionDatasubject. The class implements public methods to set/get test and set/get sessionData.
· Proficiency Rating

The Proficiency Rating class includes the private attributes subject, score, and subLevelArray Proficiency Rating objects. The class implements public methods to calculate proficiency rating, to retrieve proficiency rating, to set/get subject, and to set/get score.
· Session Data

The Session Data class includes private attributes sessionID, date, startTime, and stopTime. The class implements the public method to retrieve session data.
· Test

The Test class includes private attributes testID, subject, standardArray of Standard objects, itemArray of Item objects, responseArray of Response objects, score, and toolkit. The class implements public methods to connect to the assessment database, to retrieve test items from the database, to create a test, to post responses to the test, and to score the test.
· Standard

The Standard class includes private attributes subject, standardID, description, and reference. The class implements public methods to add standards and to retrieve standards.

· Item

The Item class includes private attributes itemID, standard, diffucultyRating, question, and answer. The class implements public methods to create an item and to retrieve the item.
· Toolkit

The Toolkit class includes private attributes calculator, ruler, protractor, and graphingAid. The class implements a public method to add the tool kit to the calling class.
· Response

The Response class includes private attributes itemID and userResponse. The class implements public methods to get/set Response.

· Score
The Score class includes private attributes scoreForTest and scoreForStandards. The class implements public method to retrieve scores.

User-Account Application
The user-account application implements the following classes as depicted in Figure 10:
· User-Account

The User-Account class includes private attribute user [] (array) of Account Holder objects. The class implements public methods to create an account, access an account, close an account, delete an account, invoke payment services, get a receipt from payment services, connect to user-data database, update the user-data database, and retrieve user-data from the database. In addition, the class implements a private method to ensure that upon setting up an account, the user has selected a unique ID.

· Account Holder

The Account Holder class includes private attributes first name, last name, user id, student [] (array) of student objects, and accounting. The attribute accounting references an Accounting object. The class implements public methods to insert student into student array, to update student information, to set/get student’s first name, and to set/get student’s last name.

· Accounting

The Accounting class includes private attributes status and payment History Array of payment history objects. The class implements public methods to set/get the status and to add/get Payment History object.

· Payment History

The Payment History class includes private attributes payment, balance, and date. The class implements public methods to set/get Balance, set/get Payment, and set/get Date.

· Student

The Student class includes private attributes studentId, proficiencyArray of proficiency rating objects, assessmentHistoryArray of assessment history objects, lastName, and gradeLevel. The class implements public methods to get assessment history objects, to get proficiency rating, to update proficiency rating of student, to set/get student’s first and last name, to et/get student’s grade level, and to get student Id.

· Assessment History

The Assessment History class includes the private attributes test and sessionDatasubject. The class implements public methods to set/get test and set/get sessionData.
· Proficiency Rating

The Proficiency Rating class includes the private attributes subject, score, and subLevelArray of Proficiency Rating objects. The class implements public methods to calculate proficiency rating, to retrieve proficiency rating, to set/get subject, and to set/get score.

· UsageProfile

The UsageProfile class includes the private attributes userLog[] (array) of Logs objects and lastUnsuccessfulAttempt which references the date and time of the last failed login attempt. The class implements public methods to add and remove a Logs object to/from the userLog array and to set/get the last unsuccessful attempt to login.
· Logs

The Logs class includes private attributes logInTIme, logOutTime, and duration which references the calculated duration of the user’s logs. The class implements public methods to set/get log in and log out times and a private method to calculate the session duration.
5. Component Design

[image: image6.emf]AMAM Component Diagram

HTTPS

Interface

Web Server Web Browser

Assessment

Application

Assessment

Application

Interface

Tutorial

Application

Tutorial

Application

Interface

User Account

Application

User Account

Application

Interface

Payment Service

Report Application

Report

Application

Interface Remediation

Resource Database

Assessment

Database

User Data

Database

Content

Management

Service

Accounting Service

Database

Interface

Database

Interface

Database

Interface

Database

Interface

User Account

Application

Interface

Database

Interface

Database

Interface

Database

Interface

Session Manager

Authentication

Manager

Authorization

Manager

Video

Plug-In

Document

Reader Plug-In

External

Persistent Data

Storage

Fire Wall

Figure 13: AMAM high level component diagram
5.1 Component identifier

	Web Browser Component
	C1

	Session, Authentication, Authorization Manager, Fire Wall Package
	P2

	HTTPS Interface
	I3

	Web Server Component
	C4

	Tutorial Application Interface
	I5

	Assessment Application Interface
	I6

	User Account Application Interface
	I7

	Report Application Interface
	I8

	Tutorial Application Component
	C9

	Assessment Application Component
	C10

	User Account Application Component
	C11

	Report Application Component
	C12

	Data Base Interface
	I13

	Remediation Resource Database
	C14

	Accounting Service Component
	C15

	User Data Database Component
	C16

	Assessment Database Component
	C17

	Content Management Service Component
	C18

	External Persistent Data Storage
	C19

	Video Plug-In
	C20

	Document Reader Plug-In
	C21

	Payment Services Component
	C22

Table 1: Component Description and Identifier
5.2 Tutorial Application Component (C9)

5.2.1 Purpose

The purpose of the tutorial application is to provide a video or document tutorial to users.
5.2.2 Function

The tutorial application is to provide a method for retrieving a video tutorial. The tutorial application is to provide a method for retrieving a document tutorial.
5.2.3 Subordinates

The tutorial application implements the web application server (C4) for end-user communication.
5.2.4 Dependencies

The tutorial application is constrained by the communication methods of the web application server (C4). In addition, the tutorial file types provided by the application are constrained to the available plug-ins.
5.2.5 Interfaces
Tutorial application implements an interface (I5) to provide interoperability with the web application server (C4).
5.2.6 Data
The tutorial application accepts arguments of type primitive to indicate end-user’s tutorial type selection, and returns document or video files.
5.3 User-Account Application Component (C11)

5.3.1 Purpose

The purpose of the user-account application is to create and update the following information pertaining to AMAM’s account holders:

· Personal information

· Accounting status and payment history
· Usage profile of log in, log out, and duration
· Students included in the account

· Students’ name and grade level information

5.3.2 Function

The main functions of the user-account application are as follows:

· create a new user account

· access an existing user account

· close a user account

· delete a user account

· insert and update students within the account

· view and update students name, grade level, proficiency rating, and assessment history

· view and set accounts’ usage profile
· implement payment services

· set accounting attribute of the account holder
· update and retrieve user-data databases by implementing database interfaces
A new user account is created by adding an instance of the Account Holder class to the user array of the user-account class with attributes first name, last name, and user ID, as provided by the user. Prior to constructing the Account Holder instance, the user account application implements a private method to verify that the user ID selected by the user is unique; meaning that is does not already identify an existing AMAM user. User ID is the uniquely identifying attribute for all account holders in the user-account application. If the user ID provided already exists, the user account application requests the user to provide a different user ID.

Once a unique user ID has been established, the Account Holder class is created with the attributes first name, last name, and user ID by referencing the attributes to the parameters provided by the user. The application creates a usage profile object to reflect the log-in time of the user. An accounting object is created to reference the accounting attribute of the class. The account holder is prompted to complete the payment services application (C22). Once the payment services application has been completed, the status attribute and payment history array of the accounting class is updated. The payment history array of the accounting class references Payment History objects with private attributes payment, balance, and date.
Once the accounting status attribute indicates an active status, the account holder has the option of adding students to his/her account or logging out and adding student(s) to the account at a different time. If the account holder opts to log-out, the application sets the usage profile to reflect the log-out time, and updates the user-data database with the user-account updates and/or modifications. If the account holder opts to add a student, the user-account application constructs a student object and references its attributes first name, last name, and grade level to the parameters provided by the account holder. The application assigns a unique student ID to reference the student ID attribute, thereby making it a uniquely identifying attribute. Each student holds a reference to his/her proficiency ratings and assessment history. Students’ proficiency ratings and assessment history is updated every time an assessment is completed (see Assessment Application Component (C10) below).
Figures 14 and 15 respectively are sequence diagrams depicting initial and subsequent user-account application uses.
5.3.3 Subordinates

The user-account application uses the following components:

· User data database (C16)-retrieval of account holder and student data
· Payment Services (C22)-completion of payment
· Web Application Server (C4)-communication with end-users
5.3.4 Dependencies

The user-account application is constrained by the connectivity and communication requirements of the user data database (C16), the service and receipt provided by the payment services (C22), and the communication requirements of the web application server (C4).
5.3.5 Interfaces

The user-account application implements an interface (I7) to provide interoperability with the web server (C4) and payment services applications (C22). The user-account application also implements a database interface (I3) for update and retrieval of user data.
5.3.6 Data

Data utilized by the user-account application is of primitive type and references to class instances as depicted by Figure 10.
[image: image7.emf]User-Account Initial Set-Up Sequence Diagram

:Accounting

:Student

:User-Account

:AccountHolder

:Web Services

:UsageProfile

:Logs

UsageProfile(logIn)

insertStudent()

setFName()

setLName()

setGradeLevel()

Logs(logIn)

Student()

AccountHolder(userID)

setUsageProfile()

addLog() setLogOutTime()

calculateDuration()

:Web Server

createAccount(userID, fName, lName)

paymentServices()

verifyUniqueID()

ID responce

setFName()

setLastName()

getReceipt()

receipt

add log

closeAccount()

insertStudent

Accounting(payment, balance, date,status)

:PaymentHistory

logged out

PaymentHistory(p,b,d)

paymentInformation

:User Data Database

updateUserData()

loop

Figure 14: Initial set-up of user-account.
[image: image8.emf]User-Account Sequence Diagram

:Accounting

:Student

:User-Account

:AccountHolder

:UsageProfile

:Logs

UsageProfile(logIn)

insertStudent()

Logs(logIn)

Student(fName, lName, gradeLevel)

AccountHolder()

setUsageProfile() addLog() setLogOutTime()

calculateDuration()

:Web Server

accessAccount(userID)

add log

closeAccount()

Accounting()

:PaymentHistory

logged out

PaymentHistory()

:User Data Database

retrieveUserData(userID)

retrieveUserData()

retrieveUserData()

updateUserData()

AccountHolder

loop

loop

Figure 15: Accessing an existing user account.
5.4 Report Application Component (C12)
5.4.1 Purpose

The purpose of the reporting application is to provide assessment results and progress reports of each student.
5.4.2 Function

The report application is available for invocation upon the selection of a student through the user-account application (C11) and after the completion of a test session (see Assessment Application Component (C 10) below). The report application provides the user with the option of specifying the provided report type by indicating the following parameters:

· Subject- specific or comprehensive

· Standard- specific or comprehensive

· Time- specific dates or comprehensive

Table 2 of this document details the report types provided by the application which are based on the combination of the above listed parameters.
5.4.3 Subordinates

The report application uses the user data database (C16) for the retrieval of assessment history data and the web application server (C4) for communication with the end user.
5.4.4 Dependencies

The report application is constrained by the connectivity and communication requirements of the user data database (C16), and the communication requirements of the web application server (C4).
5.4.5 Interfaces

The report application implements an interface (I8) to provide interoperability with the web application server (C4). It also implements a database interface (I13) for retrieval of student’s assessment history.
5.4.6 Data

AMAM is to implement an existing report application; therefore the description of internal data is beyond the scope of the AMAM project.

5.5 Assessment Application Component (C10)
5.5.1 Purpose

The purpose of the assessment application is to create an assessment for measuring a student’s proficiency in one of four subjects (language arts/reading, math, science or social studies) with regards to specific skills linked to the Indiana Academic Standards.
5.5.2 Function

The main functions of the assessment application are as follows:
· initiate a test session for the student user

· record session information

· create a test in the specified subject that is adapted to the user’s proficiencies (subject and standard specific) including an appropriate toolkit to aid in the student’s completion of the assessment

· retrieve and update user specific data from the user-data database by implementing database interfaces

· retrieve assessment data from the assessment database by implementing database interfaces

· score student responses

· score test

· calculate student proficiencies (subject and standard)
· update student proficiencies in the user-data database by implementing database interfaces

· update student responses in the user-data database by implementing database interfaces

· [image: image16.jpg]Sequence Diagram: Take an assessment
High-level overview

Webrouser

Webserver

|
requestissessmentstudent, subjec, standard) |

e

InitateTestsesion(studentiD, suject, standard)

Testsesson

e

[EvT—

sendespenses()

|

cendTestsessont)

updateTestsession()

;

endhssessmentsession

endestsession(|

record and update session information and end test session

A high level overview of the functions of the Assessment Application is depicted in Figure 16.
Figure 16: High level overview of taking an assessment
The Web Server application initiates a testing session in response to a request for an assessment from a student. An instance of the TestSession class is instantiated. The TestSession creates a Session object and assigns it a uniqueID. The date and starting time for the session are also stored as attributes of the Session object. The TestSession retrieves user data from the user-data database and populates a Student object with assessment history information and proficiency ratings.
A unique Test object is constructed for the student in the specified subject (and optional standards) based on previous assessment history and proficiencies. Items are created by retrieving standard-linked, difficulty-rated test items from the assessment database and identifying each with a unique ID. A Standard object is created and linked to each Item. The Items are stored in an array of Items maintained by the Test object. For efficiency purposes, an array of Standards associated with the Test object is also maintained. The number of Items populating a particular Test varies according to the user’s previous assessment history. A Toolkit with tools appropriate to the test subject is added to the Test object.
The TestSession is sent to the Web Server which builds an appropriate web page and delivers it to the student. Figure 17 depicts the sequence of events beginning with the initiation of the Test Session until the TestSession is sent to the Web Server.

Upon the student’s completion of the assessment, the Web Server extracts the student’s responses and updates the TestSession object.

The TestSession posts the student’s responses to the Test object. The Test object creates a Response object with the same ID as the original test Item. An array of all Responses for this Test is maintained by the Test object. Each Response is then scored against the appropriate test Item. An overall Score for the Test is calculated as well as Scores for each Standard; the Score objects are attributes of the Test object.

Upon completion of the scoring of the test, the Student’s Proficiency Rating is updated. The Session object is updated by setting the stopTime. An AssessmentHistory object is created which stores both the Session object and Test object and is added to the Student’s array of Assessment Histories. Finally, the user-data database is updated with the student’s data.

The TestSession ends and is destroyed. Figure 18 depicts the sequence of events beginning with the updating of the TestSession until the ending of the TestSession.

[image: image17.jpg]Sequence Diagram: Take an assessment
initiateTestSession() to sendTestSession()

Webserser

initiateTestession(studentiD,
subject, standardarray)

Testsesion

L —sessonbatal)

> :sessiondata

Assessment Datsbaze

p—

s Data Databze

T
etrevelserData stucent]

Studentluserd:

|
sendrestsession|)

getvRsummary ()

R sutmary- ————>]

| sensssmenti
v

|
|

|

|

|

|

st |
et |
|

|

|

|

|

|

=
conmecthscemmentoata)

retriveTesttem atalsubjec,standard, proficency)

testiemData

creatltemtestiemDatay
term

create test tem

addstandard(testiembata)

Standard

—

Teolit

[
I
aadToalil)

Figure 17: Initiating a Test Session
[image: image18.jpg]Sequence Diagram: Take an assessment v1.0
updateTestSession() to endTestSession ()

wessorer || ctososion || s || sessonpaa || crea e r ot bt
T T T
! | 1 | I i
! | | | I !
| updateTestsessh() ! ! | [
S | ! !
| |
wiesomet) | !
o LA S PO !
i
T
|
sere
! s
1
. o 2
i
T

N | S ——

JU

endTptsession()

T
|
|
|
|
b
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

updatepsumman |

setsoptime!)

sessmentistory (session, Test]

score ltem

ermeveten()
o I >
fem j> scoretem()
T

getResponsel

response.

iy

connectuserdata)

|
|
|
|
|
|
|
|
|
|
|
I
P

updateUserdata studeatd)

Figure 18: Updating a Test Session
5.5.3 Subordinates

The assessment application uses the following components:

· user-data database (C16) for the retrieval of assessment history and proficiency rating data

· assessment database (C17) for the retrieval of items for use in populating a test
· web application server (C4) for communication with end users

5.5.4 Dependencies

The assessment application is constrained by the connectivity and communication requirements of both the user-data database (C16) and assessment database (C17), and the communication requirements of the web application server (C4).
5.5.5 Interfaces

The assessment application implements an interface (I6) to provide interoperability with the web server. The assessment application also implements a data base interface (I13) for the update and retrieval of user-data and for the retrieval of assessment data.
5.5.6 Data

Data utilized by the assessment application is of primitive type and references to class instances depicted in Figure 11.
6. Human Interface Design
6.1 Overview of the User Interface

The Academic Measurement and Achievement Mentor application is accessed by entering AMAM’s URL address into the respective field of the user’s browser. The returned page is to provide the user with the option to log-in by submitting user name and password, request a form to create an account, request a video or document tutorial, or obtain contact information. In addition to the above listed user options, the returned page is to display concise information describing the purpose and functionality of the AMAM application.
Once the user has logged in, the returned page is to provide the user with the options to view usage profile log, view accounting information, select a student in the account, or update the account. If user opts to select a student, a page displaying student’s information with the options to modify student’s information, view report, or complete an assessment is returned.

Each page or form returned to the user is to be self instructing and comply with current generally accepted web page layouts and functions.
6.2 Screen Images

The development of user interface for the AMAM project is to be outsourced; the discussion of screen images is therefore outside of the scope of this document.
6.3 Screen Objects and Actions

The development of user interface for the AMAM project is to be outsourced; therefore the discussion of screen objects and action is outside of the scope of this document.
6.4 Report Formats

Commercial –off-the-shelf software will be used to provide the report features of the AMAM. The format of the reports will be dependent on the features of the report software which has not been selected at present. In general, the types of reports the AMAM will provide include a combination of subject specific, standard specific, time specific or comprehensive reports. The following table displays the report types to be provided by the reporting application.

	Report Type
	Specific

Subject
	Comprehensive

Subjects
	Specific

Standards
	Comprehensive

Standards
	Specific

Dates
	Comprehensive

Date

	
	
	x
	
	x
	
	x

	
	
	x
	
	x
	x
	

	
	
	x
	x
	
	
	x

	
	
	x
	x
	
	x
	

	
	x
	
	
	x
	
	x

	
	x
	
	
	x
	x
	

	
	x
	
	x
	
	
	x

	
	x
	
	x
	
	x
	

Table 2 Report types provided by the reporting application.
7. Requirements Matrix

	FR#
	Functional Requirement Description
	Component

	FR 1
	The system shall have a presentation layer.
	C1, P2, C20, C21

	FR1.1
	The presentation layer shall have a user interface.
	C1

	FR1.1.1
	The user interface shall utilize a web browser.
	C1

	FR1.1.2
	The user interface shall utilize a video plug-in.
	C20

	FR1.1.3
	The user interface shall utilize a document reader plug-in.
	C21

	FR1.2
	The presentation layer shall require authorization.
	P2

	FR1.3
	The presentation layer shall require authentication.
	P2

	FR1.4
	The presentation layer shall utilize session management.
	P2

	FR1.5
	The presentation layer shall have security.
	P2, I3

	FR2
	The system shall have an application layer.
	C4, I5, I6, I7, I8, C9, C10, C11, C12, C15, C22

	FR2.1
	The application layer shall have a web application server (WAS).
	C4

	FR2.2
	The application layer shall utilize an HTTPS interface.
	I3

	FR2.3
	The application layer shall utilize a tutorial interface.
	I5

	FR2.4
	The application layer shall provide a tutorial application.

	C9

	FR2.5
	The application layer shall utilize an assessment interface.
	I6

	FR2.5.1
	The assessment interface shall provide communication between the web application server and the assessment application.
	I6

	FR2.5.1.1
	The assessment interface shall receive parameters from the WAS—getTestObject(parameters)
	I6

	FR2.5.1.2
	The assessment interface shall send parameters to the WAS—deliverTestObject(parameters)
	I6

	FR2.6
	The application layer shall provide an assessment application.
	C10

	FR2.6.1
	The assessment application shall provide adaptive tests.
	C10

	FR2.6.2
	The assessment application shall provide tests for users in grades K through 12.
	C10

	FR2.6.3
	The assessment application shall provide subject specific tests.
	C10

	FR2.6.3.1
	The subject tests shall include math.
	C10

	FR2.6.3.1.1
	The assessment application shall provide measurement tools that can be manipulated by the user.
	C10

	FR2.6.3.1.2
	The assessment application shall provide calculation tools that can be manipulated by the user.
	C10

	FR2.6.3.1.3
	The assessment application shall provide functionality for entering equations shall all common mathematical symbols.
	C10

	FR2.6.3.2
	The subject tests shall include science.
	C10

	FR2.6.3.3
	The subject tests shall include English/reading.
	C10

	FR2.6.3.4
	The subject tests shall include social studies.
	C10

	FR2.6.4
	The assessment application shall provide questions linked to specific academic standards.
	C10

	FR2.6.5
	The assessment application shall provide an item bank of questions that addresses all of the academic standards at their lowest level of abstraction.
	C10

	FR2.7
	The application layer shall utilize a report interface.
	I8

	FR2.8
	The application layer shall provide a report application.
	C12

	FR2.9
	The application layer shall utilize a user-account interface.
	I7

	FR2.9.1
	The user-account interface shall provide communication between the web application server and the user-account application.
	I7

	FR2.9.1.1
	The user-account interface shall receive parameters from the WAS.
	I7, C4

	FR2.9.1.2
	The user-account interface shall send parameters to the WAS.
	I7, C4

	FR2.9.2
	The user-account interface shall provide payment services implementation.
	I7, C22

	FR2.9.2.1
	The user-account interface shall utilize an HTTPS interface.
	I3, I7

	FR2.9.2.2
	The user-account interface shall receive parameters from the web services component.
	I7, C22

	FR2.9.2.3
	The user-account interface shall send parameters to the web services component.
	I7

	FR2.10
	The application layer shall provide a user-account application.
	C11

	FR2.10.1
	The user-account application shall provide a personal profile.
	C11

	FR2.10.2
	The user-account application shall provide a usage profile.
	C11

	FR2.11
	The application layer shall utilize web services.
	C11, C22

	FR2.11.1
	The web services shall include payment services.

	C11, C22

	FR2.12
	The application layer shall have security.
	P2

	FR3
	The system shall have a data layer.
	C16, C17, C18, C19,

	FR3.1
	The data layer shall utilize a database interface.
	I13

	FR3.1.1
	The database interface shall provide connectivity between the system databases and applications and web services.
	I13, C9, C10, C11, C12, C15

	FR3.2
	The data layer shall have a user information database.
	C16

	FR3.2.1
	The user database shall allow updates to user data.

	C16,C10, C11, C12

	FR3.2.2
	The user database shall allow retrieval of user data.
	C16, C10, C11, C12

	FR3.3
	The data layer shall have an assessment database.
	C17

	FR3.4
	The data layer shall have a remediation resource database.
	C14

	FR3.5
	The data layer shall utilize external persistent data storage.
	C23

	FR3.6
	The data layer shall utilize web services.

	C18, C15

	FR3.6.1
	The web services shall provide accounting services.
	C15

	FR3.6.2
	The web services shall provide content management services.
	C18

	FR3.7
	The data layer shall have security.
	P2

Table 3 Components that satisfy functional requirements as listed in the SRS.
8. Resource Estimates

Computer resource estimates are beyond the scope of this project as defined by the course requirements for ACS 560.

9. Definitions, Acronyms and Abbreviations
	Term
	Definition

	ACS
	Applied Computer Science

	Adaptive test
	A test that successively selects questions so as to maximize the precision of the exam based on what is known about the examinee from previous questions.

	AMAM
	Academic Measurement and Achievement Tool

	Assessment application
	A component of the AMAM which builds e-assessments.

	Content management
	The set of processes and technologies that support the collection and management of the remediation resources, academic standards and assessment item bank.

	e-Assessment
	The use of computers and computer software to evaluate skills and knowledge in a certain area. For the AMAM, e- Assessment consists primarily of on-screen testing systems.

	Indiana State Academic Standards
	Standards outline what students should know and be able to do at each grade level as defined by the Indiana Department of Education.

http://dc.doe.in.gov/Standards/AcademicStandards/PrintLibrary/index.shtml

	ISTEP
	Indiana Statewide Testing for Educational Progress

	Item bank
	A collection of test questions and answers.

	Plug-in
	A set of software components that adds specific abilities to a larger software application enabling the customization of the functionality of an application.

	Proficiency profile
	A numerical snapshot of a student’s strengths and weaknesses for each skill in the Indiana academic state standards.

	Remediation resource
	A web-link to a video, tutorial, game, or instructional activity that aims to improve a student’s mastery of an academic standard.

	Report application
	A component of the AMAM which creates summary reports.

	SDD
	Software Description Document

	SRS
	Software Requirements Specification

	Tutorial
application
	A component of the AMAM which provides document-based and video-based site tutorials.

	User
	Student, parent or support staff or any other person who interacts with the AMAM.

	User-account application
	A component of the AMAM which builds user accounts.

	WAS
	Web application server which utilizes the AMAM application components to build rich, user-specific web pages.

	Web browser
	 A web browser is a program designed to enable users to access, retrieve and view documents and other resources on the Internet.

