Title: A practical approach to obstacle field route planning for unmanned rotorcraft

Authors: Hewlett, Jason K.¹; Schulein, Greg¹; Mansur, M. Hossein²

Author affiliation: ¹San Jose State University, NASA Ames Research Center, Moffett Field, CA
 ²Univ. Affiliated Research Center, NASA Ames Research Center, Moffett Field, CA

Corresponding author: Hewlett, J.K. (jhowlett@mail.arc.nasa.gov)

Source title: Annual Forum Proceedings - American Helicopter Society

Abbreviated source title: Annu Forum Proc Am Helicopter Soc

Volume: 2

Monograph title: 60th Annual Forum Proceedings - American Helicopter Society

Issue date: 2004

Publication year: 2004

Pages: 1425-1434

Language: English

ISSN: 07334249

CODEN: PFASDL

Document type: Conference article (CA)

Conference name: 60th Annual Forum Proceedings - American Helicopter Society

Conference date: June 7, 2004 - June 10, 2004

Conference location: Baltimore, MD, United states

Conference code: 63442

Sponsor: American Helicopter Society, AHS

Publisher: American Helicopter Society

Abstract: Autonomous helicopter operations in the near-earth environment will require robust and efficient obstacle field route planning. A method for obstacle field route planning is presented, which is composed of a mesh generation phase, a graph search phase, and a route refinement phase. The method mixes optimization and heuristics to obtain a satisfactory solution quickly. Simulations based on an unmanned helicopter model are presented.

Number of references: 17

Main heading: Rotors

Controlled terms: Algorithms - Computational geometry - Helicopters - Heuristic methods - Information analysis - Robustness (control systems) - Sensors - Strategic planning

Uncontrolled terms: Obstacle field route planning - Planning algorithms - Roadmap - Rotorcrafts

Classification code: 921.4 Combinatoral Mathematics, Includes Graph Theory, Set Theory - 921 Mathematics - 912.2 Management - 903.1 Information Sources and Analysis - 732.2 Control Instrumentation - 731.1 Control Systems - 723.5 Computer Applications - 652.4 Helicopters - 601.2 Machine Components

Treatment: Theoretical (THR)