WARNING:
JavaScript is turned OFF. None of the links on this concept map will
work until it is reactivated.
If you need help turning JavaScript On, click here.
Questa Cmap, creata con IHMC CmapTools, contiene informazioni relative a: Equaz goniom elem, x=arctan(p)+kπ altre eq. goniometriche elementari sin(f(x))=sin(g(x)) f(x)=g(x)+2kπ f(x)=π-g(x)+2kπ, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> sin(x)=m </mtext> </mrow> </math> <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtable> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se m<-1 o m>1 </mtext> </mtd> <mtd> <mtext> impossibile </mtext> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se -1≤m≤1 </mtext> </mtd> <mtd> <mfenced open="{" close=""> <mtable> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 1 </mtext> <none/> </mmultiscripts> <mtext> =arcsin(m)+2kπ </mtext> </mtd> </mtr> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <mtext> =π-arcsin(m)+2kπ </mtext> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> </mrow> </math>, Equazioni elementari tan(x)=p, Equazioni elementari <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> sin(x)=m </mtext> </mrow> </math>, cos(x)=n <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtable> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se n<-1 o n>1 </mtext> </mtd> <mtd> <mtext> impossibile </mtext> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se -1≤n≤1 </mtext> </mtd> <mtd> <mfenced open="{" close=""> <mtable> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 1 </mtext> <none/> </mmultiscripts> <mtext> =arcos(n)+2kπ </mtext> </mtd> </mtr> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <mtext> =-arcos(n)+2kπ </mtext> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> </mrow> </math>, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtable> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se n<-1 o n>1 </mtext> </mtd> <mtd> <mtext> impossibile </mtext> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se -1≤n≤1 </mtext> </mtd> <mtd> <mfenced open="{" close=""> <mtable> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 1 </mtext> <none/> </mmultiscripts> <mtext> =arcos(n)+2kπ </mtext> </mtd> </mtr> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <mtext> =-arcos(n)+2kπ </mtext> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> </mrow> </math> altre eq. goniometriche elementari sin(f(x))=sin(g(x)) f(x)=g(x)+2kπ f(x)=π-g(x)+2kπ, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtable> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se n<-1 o n>1 </mtext> </mtd> <mtd> <mtext> impossibile </mtext> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se -1≤n≤1 </mtext> </mtd> <mtd> <mfenced open="{" close=""> <mtable> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 1 </mtext> <none/> </mmultiscripts> <mtext> =arcos(n)+2kπ </mtext> </mtd> </mtr> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <mtext> =-arcos(n)+2kπ </mtext> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> </mrow> </math> altre eq. goniometriche elementari cos(f(x))=cos(g(x)) f(x)=g(x)+2kπ f(x)=-g(x)+2kπ, x=arctan(p)+kπ altre eq. goniometriche elementari cos(f(x))=cos(g(x)) f(x)=g(x)+2kπ f(x)=-g(x)+2kπ, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtable> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se m<-1 o m>1 </mtext> </mtd> <mtd> <mtext> impossibile </mtext> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se -1≤m≤1 </mtext> </mtd> <mtd> <mfenced open="{" close=""> <mtable> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 1 </mtext> <none/> </mmultiscripts> <mtext> =arcsin(m)+2kπ </mtext> </mtd> </mtr> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <mtext> =π-arcsin(m)+2kπ </mtext> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> </mrow> </math> altre eq. goniometriche elementari cos(f(x))=cos(g(x)) f(x)=g(x)+2kπ f(x)=-g(x)+2kπ, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtable> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se m<-1 o m>1 </mtext> </mtd> <mtd> <mtext> impossibile </mtext> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se -1≤m≤1 </mtext> </mtd> <mtd> <mfenced open="{" close=""> <mtable> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 1 </mtext> <none/> </mmultiscripts> <mtext> =arcsin(m)+2kπ </mtext> </mtd> </mtr> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <mtext> =π-arcsin(m)+2kπ </mtext> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> </mrow> </math> altre eq. goniometriche elementari tan(f(x))=tan(g(x)) f(x)=g(x)+kπ, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtable> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se n<-1 o n>1 </mtext> </mtd> <mtd> <mtext> impossibile </mtext> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se -1≤n≤1 </mtext> </mtd> <mtd> <mfenced open="{" close=""> <mtable> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 1 </mtext> <none/> </mmultiscripts> <mtext> =arcos(n)+2kπ </mtext> </mtd> </mtr> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <mtext> =-arcos(n)+2kπ </mtext> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> </mrow> </math> altre eq. goniometriche elementari tan(f(x))=tan(g(x)) f(x)=g(x)+kπ, x=arctan(p)+kπ altre eq. goniometriche elementari tan(f(x))=tan(g(x)) f(x)=g(x)+kπ, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtable> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se m<-1 o m>1 </mtext> </mtd> <mtd> <mtext> impossibile </mtext> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mtext> se -1≤m≤1 </mtext> </mtd> <mtd> <mfenced open="{" close=""> <mtable> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 1 </mtext> <none/> </mmultiscripts> <mtext> =arcsin(m)+2kπ </mtext> </mtd> </mtr> <mtr> <mtd> <mmultiscripts> <mtext> x </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <mtext> =π-arcsin(m)+2kπ </mtext> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> </mrow> </math> altre eq. goniometriche elementari sin(f(x))=sin(g(x)) f(x)=g(x)+2kπ f(x)=π-g(x)+2kπ, tan(x)=p x=arctan(p)+kπ, Equazioni elementari cos(x)=n