The Cantor Set

NAME \qquad

When working with sets, the following notations are used.
Interval Notation: $\quad[a, b)=\{x \mid a \leq x<b\}$
Compliment of a set $S, S^{\prime}: S^{\prime}=\{x \mid x \notin S\}$
Intersection of a sequence of sets: $\bigcap_{k=1}^{3} S_{k}=S_{1} \cap S_{2} \cap S_{3}$

Constructing the Cantor Set

Begin with set $\mathrm{C}_{1}=[0,1]$.

1. What is the length of C_{1} ?

Now remove the open middle third of this interval, (1/3, 2/3), leaving two closed intervals behind.
2. This will be set C_{2}.

(a) What is the length of C_{2}, the union of both subintervals?
(b) Write C_{2} in interval notation.
(c) $C_{1} \cap C_{2}=$ \qquad
(d) $C_{2}{ }^{\prime}=$ \qquad
3. Repeat the procedure, removing the open middle third of each of the sub-intervals in C_{2} to get four closed intervals, C_{3}.

(a) What is the length of C_{3} ?
(b) Write C_{3} in interval notation.
(c) $C_{1} \cap C_{2} \cap C_{3}=$ \qquad $C_{3}{ }^{\prime}=$ \qquad

This process can be repeated indefinitely by removing the open middle third of each of the sub-intervals to get a new set.
4. Consider C_{4}.
(a) Write C_{4} in interval notation.
(b) How many closed intervals are in the set C_{4} ?
(c) What is the length of C_{4} ?
5. Consider C_{5}.
(a) How many closed intervals are in the set C_{5} ?
(b) What is the length of C_{5} ?
6. Consider C_{6}.
(a) How many closed intervals are in the set C_{6} ?
(b) What is the length of C_{6} ?
7. $\bigcap_{k=1}^{6} C_{k}=$
8. This construction can be extended for any positive integer, k.
(a) How many intervals are in the set C_{k} ?
(b) What is the length of C_{k} ?
(c) Write the first three terms of the interval notation representation of C_{k}.
(d) $\bigcap_{k=1}^{n} C_{k}=$

Properties of the Cantor Set

9. Defining the sets, C_{k}, of intervals in this way creates a sequence of sets. Taking the infinite intersection $\bigcap_{k=1}^{\infty} C_{k}$ of all elements in the sequence defines a new set called the Cantor Set.
(a) Verify that the Cantor Set is not an empty set.
(b) Find three different values contained in the Cantor set.
10. How many elements are in the Cantor Set?
11. What is the length of the Cantor Set?
