The Cantor Set

NAME

When working with sets, the following notations are used.

Interval Notation: $[a, b] = \{x \mid a \le x < b\}$

Compliment of a set *S*, *S'*: $S' = \{x \mid x \notin S\}$

Intersection of a sequence of sets: $\bigcap_{k=1}^{3} S_{k} = S_{1} \cap S_{2} \cap S_{3}$

Constructing the Cantor Set

Begin with set $C_1 = [0,1]$.

1. What is the length of C_1 ?

Now remove the open middle third of this interval, (1/3, 2/3), leaving two closed intervals behind.

2. This will be set C_2 .

- (a) What is the length of C_2 , the union of both subintervals?
- (b) Write C_2 in interval notation.
- (c) $C_1 \cap C_2 =$ _____
- (d) $C_2' =$ _____

3. Repeat the procedure, removing the open middle third of each of the sub-intervals in C_2 to get four closed intervals, C₃.

- (a) What is the length of C_3 ?
- (b) Write C_3 in interval notation.
- (c) $C_1 \cap C_2 \cap C_3 =$ _____ $C_3' =$ _____

This process can be repeated indefinitely by removing the open middle third of each of the sub-intervals to get a new set.

- 4. Consider C₄.
 - (a) Write C_4 in interval notation.
 - (b) How many closed intervals are in the set C_4 ?
 - (c) What is the length of C_4 ?
- 5. Consider C₅.
 - (a) How many closed intervals are in the set C_5 ?
 - (b) What is the length of C_5 ?
- **6.** Consider C_6 .
 - (a) How many closed intervals are in the set C_6 ?
 - (b) What is the length of C_6 ?

$$7. \quad \bigcap_{k=1}^{6} C_k = _$$

- 8. This construction can be extended for any positive integer, *k*.
 - (a) How many intervals are in the set C_k ?
 - (b) What is the length of C_k ?
 - (c) Write the first three terms of the interval notation representation of C_k .
 - (d) $\bigcap_{k=1}^{n} C_k =$

Properties of the Cantor Set

- 9. Defining the sets, C_k , of intervals in this way creates a sequence of sets. Taking the infinite intersection $\bigcap_{k=1}^{\infty} C_k$ of all elements in the sequence defines a new set called the **Cantor Set**.
 - (a) Verify that the Cantor Set is not an empty set.
 - (b) Find three different values contained in the Cantor set.
- **10.** How many elements are in the Cantor Set?
- **11.** What is the length of the Cantor Set?

