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ABSTRACT   

Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer.  NASA’s 
electron beam freeform fabrication (EBF3) technology is being evaluated to manufacture metallic parts in a space 
environment.  The benefits of EBF3 technology are weight savings to support space missions, rapid prototyping in a zero 
gravity environment, and improved vehicle readiness.  The EBF3 system is composed of 3 main components: electron 
beam gun, multi-axis position system, and metallic wire feeder.  The electron beam is used to melt the wire and the 
multi-axis positioning system is used to build the part layer by layer.  To insure a quality deposit, a near infrared (NIR) 
camera is used to image the melt pool and solidification areas.  This paper describes the calibration and application of a 
NIR camera for temperature measurement.  In addition, image processing techniques are presented for deposit 
assessment metrics.   
 
Keywords: E-beam deposition, additive manufacturing, near infrared (NIR) imaging, image analysis, molten pool, 
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1. INTRODUCTION  
Three-dimensional printing or additive manufacturing is a “game changing” technology and is a rapidly growing field 
where parts can be produced layer by layer.  This technology is expected to have a significant impact in many areas 
including industrial manufacturing, medical, architecture, aerospace, and automotive.  NASA’s electron beam freeform 
fabrication (EBF3) technology is being evaluated to manufacture metallic parts, using layer by layer metal deposition, for 
both aerospace and space applications [1-3].  The advantages of additive manufacturing are reduction in material costs 
due to near net shape part builds, minimal machining required, computer assisted builds for rapid prototyping, and mass 
production capability. For space applications, the benefits of EBF3 technology are weight savings to support space 
missions, rapid prototyping in a zero gravity environment, and repair for improved vehicle readiness.   

The NASA EBF3 system is composed of 3 main components: electron beam gun, multi-axis positioning system, and 
metallic wire feeder.  Using wire in space is preferred to metal powders due to dispersion in a zero gravity environment.  
A picture of the setup is shown in Figures 1a and 1b.  The entire system is contained in a vacuum chamber, Figure 1a, to 
minimize contamination and maintain a tightly focused electron beam.  The overall size of the chamber is 2.13 x 2.74 x 
2.74 meters. The electron beam is used to melt the wire and the voltage is typically around 30 KV with beam currents of 
10 – 100 milliamps.  The beam can be focused and controlled for scanning in various patterns such as raster or circular. 
The beam can also be defocused to heat a relatively large area. Typical focused beam size is approximately 0.04 cm in 
diameter.  The multi-axis positioning system controls the build, layer-by-layer, in the X, Y, Z, and rotational directions.  
The metallic wire is fed using a rotating spool that is remotely controlled and this allows for adjustment in wire feed rate.  
The typical diameter of a stainless steel wire is approximately 0.165 cm in diameter.   

The operation of the EBF3 system requires a baseplate, which serves two main purposes.  First as the platform to build 
the part and secondly it acts as a heat sink to conduct heat away from the deposition process.  The baseplate is clamped 
to a mounting fixture to minimize warping due to thermal induced distortions. 
*joseph.n.zalameda@nasa.gov; phone 1 757-864-4793; fax 1 757-864-4914; http://nde.larc.nasa.gov/majorcap.shtml 
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side view cameras could also measure wire Z height using dual image correlation techniques.  The NIR camera used in 
this study is spectrally bandwidth limited on the long wavelength side out to 1 micron. This limits the low temperature 
range sensitivity.  Metals such as aluminum have a lower melting temperature and the molten pool could not be imaged 
using this sensor.  A sensor in the short wave infrared (SWIR) band (out to 1.7 microns) would be ideal. Also, a SWIR 
infrared camera would allow for more sensitivity in measuring the transient cool down and thus allow for deeper 
inspections.   Finally for space applications, the infrared camera can be implemented onto the portable EBF3 system 
under development [3]. The portable system will use a lower voltage electron beam, lower mass and size, and provide 
improved safety.  EBF3 deposition in a zero gravity environment may allow for unique advantages in the manipulation of 
the molten pool during builds.  Also the advantage of building parts in space provides the capability for long duration 
human space flights.  
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