MCP3201

2.7V 12-Bit A/D Converter with SPI Serial Interface

Features

- 12-bit resolution
- ±1 LSB max DNL
- ±1 LSB max INL (MCP3201-B)
- ±2 LSB max INL (MCP3201-C)
- On-chip sample and hold
- SPI serial interface (modes 0,0 and 1,1)
- Single supply operation: 2.7V - 5.5V
- 100 ksps maximum sampling rate at V_DD = 5V
- 50 ksps maximum sampling rate at V_DD = 2.7V
- Low power CMOS technology
- 500 nA typical standby current, 2 µA maximum
- 400 µA maximum active current at 5V
- Industrial temp range: -40°C to +85°C
- 8-pin MSOP, PDIP, SOIC and TSSOP packages

Applications

- Sensor Interface
- Process Control
- Data Acquisition
- Battery Operated Systems

Functional Block Diagram

Description

The Microchip Technology Inc. MCP3201 device is a successive approximation 12-bit Analog-to-Digital (A/D) Converter with on-board sample and hold circuitry. The device provides a single pseudo-differential input. Differential Nonlinearity (DNL) is specified at ±1 LSB, and Integral Nonlinearity (INL) is offered in ±1 LSB (MCP3201-B) and ±2 LSB (MCP3201-C) versions. Communication with the device is done using a simple serial interface compatible with the SPI protocol. The device is capable of sample rates of up to 100 ksps at a clock rate of 1.6 MHz. The MCP3201 device operates over a broad voltage range (2.7V - 5.5V). Low-current design permits operation with typical standby and active currents of only 500 nA and 300 µA, respectively. The device is offered in 8-pin MSOP, PDIP, TSSOP and 150 mil SOIC packages.

Package Types

MSOP, PDIP, SOIC, TSSOP
1.0 ELECTRICAL CHARACTERISTICS

1.1 Maximum Ratings†

V_{DD} 7.0V
All inputs and outputs w.r.t. V_{SS} -0.6V to V_{DD} +0.6V
Storage temperature -65°C to +150°C
Ambient temp. with power applied -65°C to +125°C
ESD protection on all pins (HBM) > 4 kV

†Notice: Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: All parameters apply at $V_{DD} = 5V$, $V_{SS} = 0V$, $V_{REF} = 5V$, $T_A = -40°C$ to +85°C, $f_{SAMPLE} = 100$ ksps, and $f_{CLK} = 16f_{SAMPLE}$; unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion Rate:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion Time t_{CONV}</td>
<td>t_{CONV}</td>
<td>—</td>
<td>—</td>
<td>12</td>
<td>clock cycles</td>
<td></td>
</tr>
<tr>
<td>Analog Input Sample Time t_{SAMPLE}</td>
<td>t_{SAMPLE}</td>
<td>1.5</td>
<td></td>
<td></td>
<td>clock cycles</td>
<td>$V_{DD} = V_{REF} = 5V$</td>
</tr>
<tr>
<td>Throughput Rate f_{SAMPLE}</td>
<td>f_{SAMPLE}</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>50</td>
<td>$V_{DD} = V_{REF} = 5V$</td>
</tr>
<tr>
<td>DC Accuracy:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td>Integral Nonlinearity INL</td>
<td>INL</td>
<td>—</td>
<td>±0.75</td>
<td>±1</td>
<td>±2</td>
<td>LSBS MCP3201-B</td>
</tr>
<tr>
<td>Differential Nonlinearity DNL</td>
<td>DNL</td>
<td>—</td>
<td>±0.5</td>
<td>±1</td>
<td>±5</td>
<td>LSBS No missing codes over</td>
</tr>
<tr>
<td>Offset Error</td>
<td>—</td>
<td>±1.25</td>
<td>±3</td>
<td></td>
<td>LSBS</td>
<td>temperature</td>
</tr>
<tr>
<td>Gain Error</td>
<td>—</td>
<td>±1.25</td>
<td>±5</td>
<td></td>
<td>LSBS</td>
<td></td>
</tr>
<tr>
<td>Dynamic Performance:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Harmonic Distortion THD</td>
<td></td>
<td>—</td>
<td>-82</td>
<td>—</td>
<td>—</td>
<td>dB $V_{IN} = 0.1V$ to 4.9V@1 kHz</td>
</tr>
<tr>
<td>Signal to Noise and Distortion (SINAD)</td>
<td>$SINAD$</td>
<td>72</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>dB $V_{IN} = 0.1V$ to 4.9V@1 kHz</td>
</tr>
<tr>
<td>Spurious Free Dynamic Range SFDR</td>
<td>$SFDR$</td>
<td>86</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>dB $V_{IN} = 0.1V$ to 4.9V@1 kHz</td>
</tr>
<tr>
<td>Reference Input:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Range</td>
<td></td>
<td>0.25</td>
<td>—</td>
<td>V_{DD}</td>
<td>V</td>
<td>Note 2</td>
</tr>
<tr>
<td>Current Drain</td>
<td>—</td>
<td>100</td>
<td>150</td>
<td>3</td>
<td>µA</td>
<td>CS = $V_{DD} = 5V$</td>
</tr>
<tr>
<td>Analog Inputs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range (IN+)</td>
<td>$IN+$</td>
<td>$IN-$</td>
<td>—</td>
<td>$V_{REF+IN-}$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range (IN-)</td>
<td>$IN-$</td>
<td>$V_{SS}-100$</td>
<td>V_{SS+100}</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage Current</td>
<td>—</td>
<td>0.001</td>
<td>±1</td>
<td></td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>Switch Resistance R_{SS}</td>
<td>—</td>
<td>1K</td>
<td>—</td>
<td>—</td>
<td>W</td>
<td>See Figure 4-1</td>
</tr>
<tr>
<td>Sample Capacitor C_{SAMPLE}</td>
<td>—</td>
<td>20</td>
<td>—</td>
<td>—</td>
<td>pF</td>
<td>See Figure 4-1</td>
</tr>
<tr>
<td>Digital Input/Output:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Coding Format</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Straight Binary</td>
</tr>
<tr>
<td>High Level Input Voltage V_{IH}</td>
<td>0.7 V_{DD}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low Level Input Voltage V_{IL}</td>
<td>0.3 V_{DD}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: This parameter is established by characterization and not 100% tested.
Note 2: See graph that relates linearity performance to V_{REF} level.
Note 3: Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures. See Section 6.2 “Maintaining Minimum Clock Speed” for more information.
ELECTRICAL CHARACTERISTICS (CONTINUED)

Temperature Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specified Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_A</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Electrical Specifications: Unless otherwise indicated, $V_{DD} = +2.7V$ to +5.5V, $V_{SS} = GND$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_A</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

Power Requirements:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>V_{DD}</td>
<td>2.7</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td>$V_{DD} = 5.0V$ (Note 3) $V_{DD} = 2.7V$ (Note 3)</td>
</tr>
<tr>
<td>Operating Current</td>
<td>I_{DD}</td>
<td>—</td>
<td>300</td>
<td>—</td>
<td>μA</td>
<td>$V_{DD} = 5.0V, DOUT unloaded$ $V_{DD} = 2.7V, DOUT unloaded$</td>
</tr>
<tr>
<td>Standby Current</td>
<td>I_{DDS}</td>
<td>—</td>
<td>0.5</td>
<td>2</td>
<td>μA</td>
<td>$CS = V_{DD} = 5.0V$</td>
</tr>
</tbody>
</table>

Note 1: This parameter is established by characterization and not 100% tested.

Note 2: See graph that relates linearity performance to V_{REF} level.

Note 3: Because the sample cap will eventually lose charge, effective clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures. See Section 6.2 “Maintaining Minimum Clock Speed” for more information.

DS21290E-page 4

© 2008 Microchip Technology Inc.
FIGURE 1-1: Serial Timing.

Load circuit for t_R, t_F, t_{DO}

Voltage Waveforms for t_R, t_F

Voltage Waveforms for t_{DO}

Load circuit for t_{DIS} and t_{EN}

Voltage Waveforms for t_{DIS}

Voltage Waveforms for t_{EN}

FIGURE 1-2: Test Circuits.

* Waveform 1 is for an output with internal conditions such that the output is high, unless disabled by the output control.

† Waveform 2 is for an output with internal conditions such that the output is low, unless disabled by the output control.
2.0 TYPICAL PERFORMANCE CHARACTERISTICS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $V_{DD} = V_{REF} = 5V$, $V_{SS} = 0V$, $f_{SAMPLE} = 100$ ksamples, $f_{CLK} = 16f_{SAMPLE}$, $T_A = +25^\circ C$.

FIGURE 2-1: Integral Nonlinearity (INL) vs. Sample Rate.

FIGURE 2-2: Integral Nonlinearity (INL) vs. V_{REF}.

FIGURE 2-3: Integral Nonlinearity (INL) vs. Code (Representative Part).

FIGURE 2-4: Integral Nonlinearity (INL) vs. Sample Rate ($V_{DD} = 2.7V$).

FIGURE 2-5: Integral Nonlinearity (INL) vs. V_{REF} ($V_{DD} = 2.7V$).

FIGURE 2-6: Integral Nonlinearity (INL) vs. Code (Representative Part, $V_{DD} = 2.7V$).
Note: Unless otherwise indicated, \(V_{DD} = V_{REF} = 5\,\text{V}, \, V_{SS} = 0\,\text{V}, \, f_{SAMPLE} = 100\,\text{ksps}, \, f_{CLK} = 16 \times f_{SAMPLE}, \, T_A = +25^\circ\text{C}. \)

FIGURE 2-7: Integral Nonlinearity (INL) vs. Temperature.

FIGURE 2-8: Differential Nonlinearity (DNL) vs. Sample Rate.

FIGURE 2-9: Differential Nonlinearity (DNL) vs. \(V_{REF} \)

FIGURE 2-10: Integral Nonlinearity (INL) vs. Temperature (\(V_{DD} = 2.7\,\text{V} \)).

FIGURE 2-11: Differential Nonlinearity (DNL) vs. Sample Rate (\(V_{DD} = 2.7\,\text{V} \)).

FIGURE 2-12: Differential Nonlinearity (DNL) vs. \(V_{REF} (V_{DD} = 2.7\,\text{V}) \).
Note: Unless otherwise indicated, $V_{DD} = V_{REF} = 5\text{V}$, $V_{SS} = 0\text{V}$, $f_{SAMPLE} = 100 \text{ ksp}s$, $f_{CLK} = 16f_{SAMPLE}$, $T_A = +25^\circ\text{C}$.

FIGURE 2-13: Differential Nonlinearity (DNL) vs. Code (Representative Part).

FIGURE 2-14: Differential Nonlinearity (DNL) vs. Temperature.

FIGURE 2-15: Gain Error vs. V_{REF}

FIGURE 2-16: Differential Nonlinearity (DNL) vs. Code (Representative Part, $V_{DD} = 2.7\text{V}$).

FIGURE 2-17: Differential Nonlinearity (DNL) vs. Temperature ($V_{DD} = 2.7\text{V}$).

FIGURE 2-18: Offset Error vs. V_{REF}
Note: Unless otherwise indicated, \(V_{DD} = V_{REF} = 5V, V_{SS} = 0V, f_{SAMPLE} = 100 \text{ ksp}, f_{CLK} = 16f_{SAMPLE}, T_A = +25^\circ C \).

FIGURE 2-19: Gain Error vs. Temperature.

FIGURE 2-20: Signal-to-Noise Ratio (SNR) vs. Input Frequency.

FIGURE 2-21: Total Harmonic Distortion (THD) vs. Input Frequency.

FIGURE 2-22: Offset Error vs. Temperature.

FIGURE 2-23: Signal-to-Noise and Distortion (SINAD) vs. Input Frequency.

FIGURE 2-24: Signal-to-Noise and Distortion (SINAD) vs. Input Signal Level.
MCP3201

Note: Unless otherwise indicated, $V_{DD} = V_{REF} = 5V$, $V_{SS} = 0V$, $f_{SAMPLE} = 100$ ksp, $f_{CLK} = 16f_{SAMPLE}$, $T_A = +25^\circ C$.

FIGURE 2-25: Effective Number of Bits (ENOB) vs. V_{REF}

FIGURE 2-26: Spurious Free Dynamic Range (SFDR) vs. Input Frequency.

FIGURE 2-27: Frequency Spectrum of 10 kHz input (Representative Part).

FIGURE 2-28: Effective Number of Bits (ENOB) vs. Input Frequency.

FIGURE 2-29: Power Supply Rejection (PSR) vs. Ripple Frequency.

FIGURE 2-30: Frequency Spectrum of 1 kHz input (Representative Part, $V_{DD} = 2.7V$).
Note: Unless otherwise indicated, $V_{DD} = V_{REF} = 5\text{V}$, $V_{SS} = 0\text{V}$, $f_{SAMPLE} = 100\text{ ksps}$, $f_{CLK} = 16\times f_{SAMPLE}$; $T_A = +25^\circ\text{C}$.

FIGURE 2-31: I_{DD} vs. V_{DD}.

FIGURE 2-32: I_{DD} vs. Clock Frequency.

FIGURE 2-33: I_{DD} vs. Temperature.

FIGURE 2-34: I_{REF} vs. V_{DD}.

FIGURE 2-35: I_{REF} vs. Clock Frequency.

FIGURE 2-36: I_{REF} vs. Temperature.
Note: Unless otherwise indicated, $V_{DD} = V_{REF} = 5\,\text{V}$, $V_{SS} = 0\,\text{V}$, $f_{\text{SAMPLE}} = 100\,\text{ksp}, f_{\text{CLK}} = 16f_{\text{SAMPLE}}, T_A = +25^\circ\text{C}$.

FIGURE 2-37: I_{DDS} vs. V_{DD}.

FIGURE 2-38: I_{DDS} vs. Temperature.

FIGURE 2-39: Analog Input Leakage Current vs. Temperature.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1. Additional descriptions of the device pins follows.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>MCP3201 Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 VREF</td>
<td>Reference Voltage Input</td>
</tr>
<tr>
<td>2 IN+</td>
<td>Positive Analog Input</td>
</tr>
<tr>
<td>3 IN-</td>
<td>Negative Analog Input</td>
</tr>
<tr>
<td>4 VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>5 CS/SHDN</td>
<td>Chip Select/Shutdown Input</td>
</tr>
<tr>
<td>6 DOUT</td>
<td>Serial Data Out</td>
</tr>
<tr>
<td>7 CLK</td>
<td>Serial Clock</td>
</tr>
<tr>
<td>8 VDD</td>
<td>+2.7V to 5.5V Power Supply</td>
</tr>
</tbody>
</table>

3.1 Positive Analog Input (IN+)

Positive analog input. This input can vary from IN- to VREF + IN-.

3.2 Negative Analog Input (IN-)

Negative analog input. This input can vary ±100 mV from VSS.

3.3 Chip Select/Shutdown (CS/SHDN)

The CS/SHDN pin is used to initiate communication with the device when pulled low and will end a conversion and put the device in low power standby when pulled high. The CS/SHDN pin must be pulled high between conversions.

3.4 Serial Clock (CLK)

The SPI clock pin is used to initiate a conversion and to clock out each bit of the conversion as it takes place. See Section 6.2 “Maintaining Minimum Clock Speed” for constraints on clock speed.

3.5 Serial Data Output (DOUT)

The SPI serial data output pin is used to shift out the results of the A/D conversion. Data will always change on the falling edge of each clock as the conversion takes place.
4.0 DEVICE OPERATION

The MCP3201 A/D Converter employs a conventional SAR architecture. With this architecture, a sample is acquired on an internal sample/hold capacitor for 1.5 clock cycles starting on the first rising edge of the serial clock after CS has been pulled low. Following this sample time, the input switch of the converter opens and the device uses the collected charge on the internal sample and hold capacitor to produce a serial 12-bit digital output code. Conversion rates of 100 kSPS are possible on the MCP3201 device. See Section 6.2 “Maintaining Minimum Clock Speed” for information on minimum clock rates. Communication with the device is done using a 3-wire SPI-compatible interface.

4.1 Analog Inputs

The MCP3201 device provides a single pseudo-differential input. The IN+ input can range from IN- to VREF (VREF + IN-). The IN- input is limited to ±100 mV from the VSS rail. The IN- input can be used to cancel small signal common-mode noise which is present on both the IN+ and IN- inputs.

For the A/D Converter to meet specification, the charge holding capacitor (C\text{SAMPLE}) must be given enough time to acquire a 12-bit accurate voltage level during the 1.5 clock cycle sampling period. The analog input model is shown in Figure 4-1.

In this diagram, it is shown that the source impedance (R\text{S}) adds to the internal sampling switch (R\text{SS}) impedance, directly affecting the time that is required to charge the capacitor (C\text{SAMPLE}). Consequently, a larger source impedance increases the offset, gain, and integral linearity errors of the conversion.

Ideally, the impedance of the signal source should be near zero. This is achievable with an operational amplifier such as the MCP601, which has a closed loop output impedance of tens of ohms. The adverse affects of higher source impedances are shown in Figure 4-2.

If the voltage level of IN+ is equal to or less than IN-, the resultant code will be 000h. If the voltage at IN+ is equal to or greater than \(|V_{\text{REF}} + (\text{IN-})| - 1 \text{ LSB}\), then the output code will be FFFh. If the voltage level at IN- is more than 1 LSB below VSS, then the voltage level at the IN+ input will have to go below VSS to see the 000h output code. Conversely, if IN- is more than 1 LSB above VSS, then the FFFh code will not be seen unless the IN+ input level goes above VREF level.

4.2 Reference Input

The reference input (V\text{REF}) determines the analog input voltage range and the LSB size, as shown below.

\[
\text{EQUATION 4-1:} \quad \text{LSB Size} = \frac{V_{\text{REF}}}{4096}
\]

As the reference input is reduced, the LSB size is reduced accordingly. The theoretical digital output code produced by the A/D Converter is a function of the analog input signal and the reference input as shown below.

\[
\text{EQUATION 4-2:} \quad \text{Digital Output Code} = \frac{4096*V_{\text{IN}}}{V_{\text{REF}}}
\]

Where:
\[
V_{\text{IN}} = \text{Analog Input Voltage} = V(\text{IN+}) - V(\text{IN-}) \\
V_{\text{REF}} = \text{Reference Voltage}
\]

When using an external voltage reference device, the system designer should always refer to the manufacturer’s recommendations for circuit layout. Any instability in the operation of the reference device will have a direct effect on the operation of the A/D Converter.
FIGURE 4-1: Analog Input Model.

FIGURE 4-2: Maximum Clock Frequency vs. Input Resistance (R_S) to maintain less than a 0.1 LSB deviation in INL from nominal conditions.
5.0 SERIAL COMMUNICATIONS

Communication with the device is done using a standard SPI-compatible serial interface. Initiating communication with the MCP3201 device begins with the CS going low. If the device was powered up with the CS pin low, it must be brought high and back low to initiate communication. The device will begin to sample the analog input on the first rising edge after CS goes low. The sample period will end in the falling edge of the second clock, at which time the device will output a low null bit. The next 12 clocks will output the result of the conversion with MSB first, as shown in Figure 5-1. Data is always output from the device on the falling edge of the clock. If all 12 data bits have been transmitted and the device continues to receive clocks while the CS is held low, the device will output the conversion result LSB first, as shown in Figure 5-2. If more clocks are provided to the device while CS is still low (after the LSB first data has been transmitted), the device will clock out zeros indefinitely.

*After completing the data transfer, if further clocks are applied with CS low, the A/D Converter will output LSB first data, followed by zeros indefinitely. See Figure 5-2 below.

tDATA: during this time, the bias current and the comparator power down and the reference input becomes a high-impedance node, leaving the CLK running to clock out the LSB-first data or zeros.

FIGURE 5-1: Communication with MCP3201 device using MSB first Format.

FIGURE 5-2: Communication with MCP3201 device using LSB first Format.
6.0 APPLICATIONS INFORMATION

6.1 Using the MCP3201 Device with Microcontroller SPI Ports

With most microcontroller SPI ports, it is required to clock out eight bits at a time. If this is the case, it will be necessary to provide more clocks than are required for the MCP3201. As an example, Figure 6-1 and Figure 6-2 show how the MCP3201 device can be interfaced to a microcontroller with a standard SPI port. Since the MCP3201 always clocks data out on the falling edge of clock, the MCU SPI port must be configured to match this operation. SPI Mode 0,0 (clock idles low) and SPI Mode 1,1 (clock idles high) are both compatible with the MCP3201. Figure 6-1 depicts the operation shown in SPI Mode 0,0, which requires that the CLK from the microcontroller idles in the 'low' state. As shown in the diagram, the MSB is clocked out of the A/D Converter on the falling edge of the third clock pulse. After the first eight clocks have been sent to the device, the microcontroller's receive buffer will contain two unknown bits (the output is at high-impedance for the first two clocks), the null bit and the highest order five bits of the conversion. After the second eight clocks have been sent to the device, the MCU receive register will contain the lowest-order seven bits and the B1 bit repeated as the A/D Converter has begun to shift out LSB first data with the extra clock. Typical procedure would then call for the lower-order byte of data to be shifted right by one bit to remove the extra B1 bit. The B7 bit is then transferred from the high-order byte to the lower-order byte, and then the higher-order byte is shifted one bit to the right as well. Easier manipulation of the converted data can be obtained by using this method.

Figure 6-2 shows the same thing in SPI Mode 1,1 which requires that the clock idles in the high state. As with mode 0,0, the A/D Converter outputs data on the falling edge of the clock and the MCU latches data from the A/D Converter in on the rising edge of the clock.

FIGURE 6-1: SPI Communication using 8-bit segments (Mode 0,0: SCLK idles low).

FIGURE 6-2: SPI Communication using 8-bit segments (Mode 1,1: SCLK idles high).
6.2 Maintaining Minimum Clock Speed

When the MCP3201 initiates the sample period, charge is stored on the sample capacitor. When the sample period is complete, the device converts one bit for each clock that is received. It is important for the user to note that a slow clock rate will allow charge to bleed off the sample cap while the conversion is taking place. At 85°C (worst case condition), the part will maintain proper charge on the sample capacitor for at least 1.2 ms after the sample period has ended. This means that the time between the end of the sample period and the time that all 12 data bits have been clocked out must not exceed 1.2 ms (effective clock frequency of 10 kHz). Failure to meet this criteria may induce linearity errors into the conversion outside the rated specifications. It should be noted that during the entire conversion cycle, the A/D Converter does not require a constant clock speed or duty cycle, as long as all timing specifications are met.

6.3 Buffering/Filtering the Analog Inputs

If the signal source for the A/D Converter is not a low impedance source, it will have to be buffered or inaccurate conversion results may occur. See Figure 4-2. It is also recommended that a filter be used to eliminate any signals that may be aliased back into the conversion results. This is illustrated in Figure 6-3 where an op amp is used to drive the analog input of the MCP3201 device. This amplifier provides a low impedance source for the converter input and a low-pass filter, which eliminates unwanted high-frequency noise.

Low-pass (anti-aliasing) filters can be designed using Microchip’s interactive FilterLab® software. FilterLab will calculate capacitor and resistor values, as well as determine the number of poles that are required for the application. For more information on filtering signals, see the application note AN699 “Anti-Aliasing Analog Filters for Data Acquisition Systems.”
6.4 Layout Considerations

When laying out a printed circuit board for use with analog components, care should be taken to reduce noise wherever possible. A bypass capacitor should always be used with this device and should be placed as close as possible to the device pin. A bypass capacitor value of 1 µF is recommended.

Digital and analog traces should be separated as much as possible on the board and no traces should run underneath the device or the bypass capacitor. Extra precautions should be taken to keep traces with high-frequency signals (such as clock lines) as far as possible from analog traces.

Use of an analog ground plane is recommended in order to keep the ground potential the same for all devices on the board. Providing V_{DD} connections to devices in a “star” configuration can also reduce noise by eliminating current return paths and associated errors. See Figure 6-4. For more information on layout tips when using A/D Converter, refer to AN688 “Layout Tips for 12-Bit A/D Converter Applications”.

FIGURE 6-4: V_{DD} traces arranged in a “Star” configuration in order to reduce errors caused by current return paths.
7.0 PACKAGING INFORMATION

7.1 Package Marking Information

Legend:

- XX...X Customer-specific information
- Y Year code (last digit of calendar year)
- YY Year code (last 2 digits of calendar year)
- WW Week code (week of January 1 is week ‘01’)
- NNN Alphanumeric traceability code
- 3e Pb-free JEDEC designator for Matte Tin (Sn)
- * This package is Pb-free. The Pb-free JEDEC designator (3e) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimension Limits</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>e</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111B
8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:
1. Pin 1 visual index feature may vary, but must be located with the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B
MCP3201

8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Schematic Diagram

![Diagram of MCP3201 package](image)

Dimensions Table

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Chamfer (optional)</td>
<td>h</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
</tr>
</tbody>
</table>

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B
8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

![RECOMMENDED LAND PATTERN Image]

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Pitch</td>
<td>E</td>
<td></td>
<td>1.27 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
<td></td>
<td>5.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
<td></td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
<td></td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A
MCP3201

8-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Dimensions:

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.

 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-086B
APPENDIX A: REVISION HISTORY

Revision E (November 2008)
The following is the list of modifications:
1. Updated Section 7.0 “Packaging Information”
2. Updated Section “Product Identification System”.

Revision D (January 2007)
The following is the list of modifications:
1. This revision includes updates to the packaging diagrams.

Revision C (August 2001)
The following is the list of modifications:
1. This revision includes undocumented changes.

Revision B (August 1999)
The following is the list of modifications:
1. This revision includes undocumented changes.

Revision A (September 1998)
• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Grade</th>
<th>Temperature Range</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCP3201: 12-Bit A/D Converter w/SPI Interface</td>
<td>B: ± LSB max INL (MSOP and TSSOP not available)</td>
<td>I = -40°C to +85°C (Industrial)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCP3201T: 12-Bit A/D Converter w/SPI Interface (Tape and Reel)</td>
<td>C: ± LSB max INL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MS = Plastic Micro Small Outline (MSOP), 8-lead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P = Plastic DIP (300 mil Body), 8-lead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SN = Plastic SOIC (150 mil Body), 8-lead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ST = Plastic TSSOP (4.4 mm), 8-lead</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

a) MCP3201-BI/P: B Grade, Industrial Temperature, 8LD PDIP package.
b) MCP3201-BI/SN: B Grade, Industrial Temperature, 8LD SOIC package.
c) MCP3201-CI/P: C Grade, Industrial Temperature, 8LD PDIP package.
d) MCP3201-CI/MS: C Grade, Industrial Temperature, 8LD MSOP package.
e) MCP3201-CI/SN: C Grade, Industrial Temperature, 8LD SOIC package.
f) MCP3201-CI/ST: C Grade, Industrial Temperature, 8LD TSSOP package.
g) MCP3201T-BI/SN: Tape and Reel, B Grade, Industrial Temperature, 8LD SOIC package.
h) MCP3201T-CI/MS: Tape and Reel, C Grade, Industrial Temperature, 8LD MSOP package.
i) MCP3201T-CI/SN: Tape and Reel, C Grade, Industrial Temperature, 8LD SOIC package.
j) MCP3201T-CI/ST: Tape and Reel, C Grade, Industrial Temperature, 8LD TSSOP package.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeloQ, KeeloQ logo, MPLAB, PIC, PICmicro, PICSTART, rPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICWorks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PiTail, PIC18 logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rLAB, Select Mode, Total Endurance, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KeeloQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

- **Atlanta**
 Duluth, GA
 Tel: 678-957-9614
 Fax: 678-957-1455
- **Boston**
 Westborough, MA
 Tel: 774-760-0087
 Fax: 774-760-0088
- **Chicago**
 Itasca, IL
 Tel: 630-285-0071
 Fax: 630-285-0075
- **Dallas**
 Addison, TX
 Tel: 972-818-7423
 Fax: 972-818-2924
- **Detroit**
 Farmington Hills, MI
 Tel: 248-538-0071
 Fax: 248-538-2260
- **Kokomo**
 Kokomo, IN
 Tel: 765-864-8360
 Fax: 765-864-8387
- **Los Angeles**
 Mission Viejo, CA
 Tel: 949-462-9523
 Fax: 949-462-9608
- **Santa Clara**
 Santa Clara, CA
 Tel: 408-961-6444
 Fax: 408-961-6445
- **Toronto**
 Mississauga, Ontario, Canada
 Tel: 905-673-0699
 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5111
Fax: 86-28-8665-7889

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6116
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

01/02/08