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Recent studies have greatly increased our knowledge of microbial ecology of the indoor environments in
which we live and work. However, the number of studies collecting robust, long-term data using
standardized methods to characterize important building characteristics, indoor environmental condi-
tions, or human occupancy — collectively referred to as “built environment data” — remain limited.
Insufficiently described built environment data can limit our ability to compare microbial ecology results
from one indoor environment to another or to use the results to assess how best to control indoor
microbial communities. This work first reviews recent literature on microbial community characteriza-
tion in indoor environments (primarily those that utilized molecular methods), paying particular
attention to the level of assessment of influential built environment characteristics and the specific
methods and procedures that were used to collect those data. Based on those observations, we then
describe a large suite of indoor environmental and building design and operational parameters that can
be measured using standardized methods to inform experimental design in future studies of the mi-
crobial ecology of the built environment. This work builds upon the recently developed MIxS-BE package
that identifies high-level minimal built environment metadata to collect in microbial ecology studies,
primarily by providing more justification, detail, and context for these important parameters and others
from the perspective of engineers and building scientists. It is our intent to provide microbial ecologists
with knowledge of many of the tools available for built environment data collection, as well as some of
the constraints and considerations for these tools, which may improve our ability to design indoor

microbial ecology studies that can better inform building design and operation.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

of which represent indoor environments where people spend
much of their time.

Recent advances in DNA sequencing techniques that allow rapid,
high-throughput characterization of taxonomic marker genes (e.g.,
16S/18S rRNA and fungal ITS) and whole genomic DNA from envi-
ronmental samples [1,2], coupled with the recognition that the
majority of people in the developed world spend most of their lives
indoors [3—7], has led to a rapid increase in the number of studies
exploring microbial diversity within the built environment [8—10].
Recent studies have characterized microbial diversity in offices and
other commercial buildings [11,12], university buildings and class-
rooms [13—17], healthcare facilities [18—23], homes [24—29],
public restrooms [30], and transportation environments [31,32], all

* Corresponding author.
E-mail address: brent@iit.edu (B. Stephens).

http://dx.doi.org/10.1016/j.buildenv.2014.07.004

These recent studies have greatly increased our knowledge of
microbial community structure and composition within the spaces
in which we live and work. They have revealed that culture-based
methods vastly underestimate the abundance and diversity of mi-
crobial communities in air and on surfaces indoors. A number of
these recent studies, in addition to many others from years of
studies relying on cultures and other methods, have also shown
that a number of building design and operational characteristics,
indoor environmental conditions, and human occupancy patterns
can strongly influence the structure, diversity, abundance, and
survival of microbial communities found indoors [13,15,23,33].
Some of these important building-related parameters include air
and surface temperatures, relative and absolute humidity, outdoor
air ventilation rates, HVAC particle filtration efficiency, human oc-
cupancy, human contact frequencies with surfaces, and several
others.
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However, the number of studies collecting robust, long-term
data using standardized methods to characterize building opera-
tion, human occupancy, indoor environmental conditions remain
limited. Insufficiently or inadequately described building opera-
tional and environmental characteristics can limit our ability to
compare results from microbial ecology investigations from one
indoor environment to another or to use the results to assess how
best to control indoor microbial communities [34]. Therefore, this
work first reviews recent literature on microbial community char-
acterization in indoor environments, paying particular attention to
the level of assessment of influential indoor environmental char-
acteristics and the specific methods and procedures that were used
to collect those data. Based on those observations, we then describe
a large suite of indoor environmental and building design and
operational parameters — collectively referred to as “built envi-
ronment data” — that can be measured using standardized methods
to inform experimental design in future studies of the microbial
ecology of the built environment. This work is intended to support
the recently developed MIxS-BE package [35] that describes mini-
mal built environment metadata to collect in microbial ecology
studies by providing more justification, detail, and context for these
important parameters and others from the perspective of engineers
and building scientists.

2. Recent culture-independent analyses of microbial
communities in indoor environments and their relationships
to built environment data

Recent studies utilizing culture-independent analyses of mi-
crobial communities in indoor environments can be grouped into
three general categories based on their level of detail in doc-
umenting built environment data: (1) those that did not include
any building descriptions or building environmental measure-
ments; (2) those that included some basic information about
building characteristics, heating, ventilating, and air-conditioning
(HVAC) systems, outdoor air ventilation strategies, occupant be-
haviors, and/or environmental conditions during the time of testing
(i.e., basic built environment metadata); and (3) those that included
detailed information about HVAC systems, environmental condi-
tions, and/or human activities in the sampled space (i.e., detailed
built environment data). Although there is some overlap between
these categories, it is instructive to think of these studies with
increasing complexity in terms of building environmental, opera-
tional, and/or occupational characterizations. The next sections
describe details of several studies in each of these categories with
the intent of demonstrating how robust built environment data
collection can be used to generalize results from one indoor envi-
ronment to another and how a lack of methods standardization for
environmental data collection can lead to a decreased ability for
extrapolation.

2.1. Microbial diversity in the absence of built environment data

Many recent culture-independent studies of microbial diversity
in the built environment have focused primarily on surface sam-
pling, with fewer incorporating various methods of indoor air
sampling. Many of these studies focused on characterizing micro-
bial communities without characterizing building characteristics or
local indoor environmental and operational parameters that may
greatly affect microbial diversity [11,18,20—22,25,28,30]. For
example, Kelley et al. (2004) analyzed bacteria in biofilms from
used shower curtains from different households [28]. Each com-
munity was shown to be highly complex and no identical se-
quences were encountered in the different communities. However,
no information was reported on relevant environmental

parameters and conditions that may have influenced microbial
diversity among shower curtains such as shower usage, cleaning
procedures or frequency, or other building environmental condi-
tions that could have influenced bacteria survival such as temper-
ature or humidity. Documentation of such conditions, particularly
cleaning procedures, might have helped explain some of the vari-
ability among sampling locations as other studies have shown [36].

Lee et al. (2007) found a large diversity of uncultured bacteria on
a number of surfaces in a child-care center, including sequences
related to those found in human vaginal epithelium and waste-
water sludge, as well as a number of pathogens [22]. Additionally,
they observed some temporal variability in bacterial diversity in
this environment over a six-month period, particularly during cold
and flu season. Although, without collecting data on building
operation, environmental conditions, or human occupancy, this
variability could not be readily explained, which limits extrapola-
tion to other environments. Hewitt et al. (2012) found that bacterial
diversity on several surfaces in office spaces in Tucson, AZ were
clearly different from those found in New York, NY and San Fran-
cisco, CA (which were indistinguishable from each other) [11].
Additionally, bacterial abundance was significantly lower in San
Francisco compared to both Tucson and New York. However, with
samples in three very different climates, a lack of information on
human occupancy or building design and operational characteris-
tics limit our ability to further interpret these results beyond basic
geographic differences.

Poza et al. (2012) compared bacterial diversity on surfaces in
intensive care units (ICUs) to that observed in an open, crowded
entrance hall of a hospital [20]. Bacterial diversity detected in the
ICU was different from that in the hall, suggesting that high human
occupancy in close proximity within the hall may have played an
important role. Hewitt et al. (2013) surveyed bacterial diversity in
two neonatal intensive care units (NICUs) and tracked the sources
of microbes [18]. Many of the bacteria genera included known
pathogens and many were skin-associated. Fecal coliform bacteria
were also detected in high proportions of surface samples in one of
the units. Although the authors maintained a particular focus on
commonly touched surfaces in the units, no quantitative measures
of human occupancy were noted, which may have helped further
explain their results. In another study of ICUs in a hospital, Ober-
auner et al. (2013) sampled floors, medical devices, and workplaces
[21]. Floor-associated communities formed distinct clusters
compared to devices, whereas workplaces and devices were
similar, again suggesting occupancy influences. The authors also
noted that the investigated ICU had both air conditioning and
window ventilation, although it was not clear which was being
utilized during the study or how they may have impacted the
results.

Overall, results from these and other similar studies have pro-
vided tremendous additions to our knowledge of the diversity,
composition, and structure of indoor microbial communities.
However, extrapolation of results to other indoor environments is
challenging without more knowledge on the particular sample
environments themselves.

2.2. Microbial diversity and basic built environment metadata

Several recent indoor microbial investigations have provided
basic information about qualitative building characteristics, HVAC
systems and ventilation strategies, occupant behaviors, and/or
basic indoor environmental parameters such as air temperature (T)
and relative humidity (RH) during testing that could potentially
influence or explain some of the observed results. For example,
Rintala et al. (2008) investigated the composition and dynamics of
bacterial communities in settled dust using vacuum cleaner
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sampling inside offices in two similarly aged buildings over a period
of one year [19]. A civil engineer performed a technical inspection
on both buildings; one building had local signs of moisture and
microbial damage in the bathrooms, which is important to note
because higher biological loads have been observed in water-
damaged buildings and building materials [37—39] and dampness
is consistently associated with a number of adverse respiratory
health effects [40—43]. In fact, the authors noted that employees in
the building had complained of building-related health symptoms
and indoor air problems. Interestingly, differences between build-
ings were more pronounced and consistent than seasonal differ-
ences in the same buildings, although without more knowledge on
occupancy, activity, and cleaning patterns, environmental condi-
tions, ventilation rates, specific building materials, or the mass of
settled dust on the sample surfaces, it remains difficult to further
extrapolate these results to other indoor environments.

Amend et al. (2010) performed a survey of fungal composition in
settled dust samples in indoor environments in 72 buildings across
six continents, again using vacuum cleaner sampling methods [44].
Sixty-one buildings were households and the rest were offices,
shops, and a church. Samples were taken in “accessible,” “infre-
quently accessed,” and “inaccessible” areas in each of the buildings,
corresponding to different classifications of likely direct human
occupancy. Fungal diversity was significantly higher in buildings
located in temperate zones than in the tropics (measured by dis-
tance from the equator). This was hypothesized to reflect correla-
tions with local outdoor environments, impacted by variables such
as rainfall and temperature, although specific environmental con-
ditions were not measured. Interestingly, building function (i.e.,
homes versus offices) had no effect on indoor fungal composition,
despite very large differences in both architecture and materials of
buildings (although these differences were not described in detail).

More recently, Kembel et al. (2012) quantified airborne bacterial
communities and environmental conditions inside patient rooms of
a hospital that were occupied only by researchers during testing
and in outdoor air on the roof near the outdoor air intake of the
HVAC system [23]. The rooms were classified as “exposed to me-
chanical ventilation” or “exposed to window ventilation.” The
mechanically ventilated rooms had ventilation air supplied by the
HVAC system and removed by a return duct and a bathroom
exhaust duct. The window ventilated rooms had ventilation air
supplied directly from the outside through a window and removed
through a return duct, bathroom exhaust, and by any outflow
through portions of the same window. The phylogenetic diversity
of airborne bacterial communities was lower indoors than outdoors
overall, although the mechanically ventilated rooms were less
diverse than window-ventilated rooms. However, bacterial com-
munities indoors contained many taxa that are absent or rare
outdoors, including those potentially related to human pathogens,
suggesting humans were significant sources in these particular
rooms. Other building environmental parameters such as the
source of ventilation air, airflow rates, and indoor T/RH were also
correlated with the diversity and composition of indoor bacterial
communities (although some of these factors also correlated with
each other). The relative abundance of bacteria closely related to
human pathogens was higher in rooms with lower airflow rates
(used as a surrogate for air change rates) and lower relative hu-
midity. Results from this study clearly demonstrate that the source
of ventilation air is an important determinant of indoor microbial
communities, which suggests that at a minimum this kind of basic
built environment data should be collected in future studies.

Adams et al. (2013) assessed the pattern of fungal diversity and
composition in airborne dust that settled onto suspended petri
dishes both indoors (in the kitchen, living room, bathroom, and
bedroom) and outdoors (on a patio or deck) at a university housing

facility [45]. The authors also noted several details about the con-
struction of the housing complex units (e.g., age of construction,
exterior cladding material, and interior wall material). Each build-
ing had its own forced-air ventilation system with heating but no
air-conditioning. A short survey was given to occupants inquiring
about unit age, the number of various types of rooms, and the
frequency of cleaning by the occupants. Indoor air T/RH were also
measured during sampling. Some of these factors were significant
predictors of fungal community composition across units in single-
factor models, including floor level and frequency of cleaning;
however, only geographic distance from each other remained sig-
nificant predictors in multifactor models. Indoor T/RH showed no
association across the ranges measured. Overall, more fungal
biomass was found in outdoor air versus indoor air and indoor
fungal assemblages strongly correlated with outdoor measure-
ments. No fungal taxa were found as indicators of indoor sources
and room and occupant behavior had no detectable effect on the
fungi found in indoor air, suggesting that local outdoor air fungi
dominated the patterns of indoor air fungi in these residences.
However, if more basic building characteristics such as air change
rates (ACH) or building airtightness had been measured and
documented, we hypothesize that more could potentially have
been inferred about variations in fungal communities between
buildings since these parameters are well known to greatly influ-
ence outdoor particle infiltration [46—48].

Adams et al. (2014) also examined the bacterial component of
the same residential samples mentioned above and found that, as
with fungi, bacterial richness was higher outdoors than indoors
[49]. It was also higher in units that reported some humidifier use,
which suggests that moisture-generating indoor activities are
important built environment related mdata to capture. Bacterial
composition varied by residential unit and room type, while fungi
varied by season and residential unit. Indoor samples had a large
amount of human-associated taxa not found outdoors, indicating
humans as a greater indoor source of bacteria than fungi.

Meadow et al. (2013) measured indoor and outdoor airborne
bacterial communities using button samplers installed over a
period of 9 days in 8 classrooms within a highly-trafficked uni-
versity building with a hybrid HVAC system (i.e., with both me-
chanical and natural ventilation) [14]. Four of the classrooms were
identified as “night-flushed” rooms, which received mostly unfil-
tered outdoor air ventilation and four others were identified as
“non-night-flushed” rooms, which received a combination of
filtered recirculated air and outdoor air controlled by an econo-
mizer HVAC system that adjusted outdoor airflow fractions based
on outdoor temperatures. All mechanically supplied air passed
through a MERV 8 particle filter. MERV, or Minimum Efficiency
Removal Value, is a common method for classifying the particle
removal efficiency of HVAC filters, per ASHRAE Standard 52.2 [50].
Indoor air communities closely tracked outdoor air communities,
but human-associated bacterial genera were more than twice as
abundant in indoor air than outdoor air. Importantly, ventilation
was shown to have a demonstrative effect on indoor airborne
bacterial community composition, particularly after following a
time lag associated with particular ventilation strategies. For
example, when the fraction of outdoor air was reduced to 0% for
several hours in the “non-night-flushed” rooms (i.e., with 100%
recirculating and filtered air), indoor bacterial communities
became very dissimilar from outdoor air communities; at the same
time bacterial communities in the rooms with nearly 100% unfil-
tered outdoor air supply were very similar to those observed out-
doors. Thus, the importance of the source and delivery rates of
ventilation air was again clearly demonstrated in this study.

Overall, results from the studies in this section suggest that
outdoor ventilation strategies and HVAC system airflow rates can
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greatly impact indoor bacterial communities, which is intuitive
given their large influence on concentrations of both particles and
gases [47,51—54]|. These results also suggest that basic environ-
mental parameters such as temperature and relative humidity and
human occupancy patterns play an important role in influencing
indoor microbial communities, which is consistent with previous
literature [33,55,56].

2.3. Microbial diversity and detailed built environment data

Finally, several recent studies have focused more on gathering
very detailed information about building characteristics, environ-
mental conditions, and/or human activities in their sampled envi-
ronments, which we believe has served to clearly demonstrate the
importance of robust, standardized built environment data collec-
tion. Perhaps most important for demonstrating this, Qian et al.
(2012) quantified size-resolved emission rates of airborne biolog-
ical (bacterial and fungal) particles from people using staged
measurements in a 90 m> classroom [13]. Emission rates are
important to characterize because they allow for direct extrapola-
tion to other environments and comparisons between sources. The
authors were able to calculate emission rates because they suffi-
ciently characterized detailed building operation, including ACH,
HVAC operation, and the number of occupants during sampling.
More specifically, their study used measurements during four days
while the room was occupied and four days while the classroom
was vacant. The room held an average of 4.7 people during a total of
22.2 h of sampling during occupied periods, assessed visually by
the researchers. Windows and doors were closed and conditioned
air was delivered by the HVAC system through a single register.
Exhaust ports were located along the floor and near the wall
opposite of the ventilation supply. The ACH was measured using
periodic injections of CO, followed by decay periods; the mean ACH
was 5.5 per hour. Particles were sampled onto polycarbonate filters
loaded into an 8-stage non-viable impactor. To obtain genome
copies above detection levels on all stages, the impactors sampled
air cumulatively for the four consecutive occupied or vacant
experimental days. Optical particle counters were also used
simultaneously to measure size-resolved number concentrations in
the room.

Size-resolved microbial emission rates during human occu-
pancy were estimated by considering the room as a well-mixed
reactor and using a time-averaged mass balance to quantify the
indoor concentration as the sum of a fraction of the outdoor con-
centration (measured during vacant periods) plus a contribution
from indoor emissions (which is a function of individual emission
rates, the number of people present, the volume of the space, the
outdoor air ventilation rate, and size-resolved particle deposition
rates). Size-resolved particle deposition rates were assumed from
previously measured values in existing literature [57]. Emission
rates of bacteria or fungi were assumed to be the same for each
person in the room. Bacterial genomes showed a strong peak in
indoor concentrations during occupancy for particles in the
3—5 um aerodynamic diameter size range. Fungal genomes peaked
near 2—5 pum and >10 um, corresponding well with typically cited
aerodynamic diameters of unicellular and multicellular fungal
spores, respectively.

Overall, bacteria contributed approximately 0.1% to indoor
airborne particle mass during occupied periods; no such estimation
was made for fungi. These aggregate emission rates include both
contributions from resuspension from the carpeted floor and other
surfaces as well as direct shedding of microorganisms from
humans. The indoor occupied aerosol microbial ecology showed a
distinct signature of human skin microflora in addition to outdoor
air and resuspended dust. These important results demonstrated

that human occupancy results in significant emissions of airborne
particle mass, bacterial genomes, and fungal genomes. The authors
also noted that the dominant size ranges for bacterial genomes
were generally larger than pure culture (i.e., single bacteria), sug-
gesting that organisms may be attached to each other or to other
small biotic or abiotic particles. Detailed knowledge of particle size
distributions in this study offers a unique ability to extrapolate from
measured airborne microbial communities to the overall fate,
transport, and control of indoor bioaerosols.

Using data from the same study as above, Hospodsky et al.
(2012) characterized total particle mass concentrations, bacterial
genome concentrations, and bacterial phylogenetic populations
indoors, outdoors, and in ventilation duct supply air concurrently
[15]. HVAC filter dust and floor dust were also sampled. Impor-
tantly, a number of detailed measurements of environmental pa-
rameters, including T/RH and CO, concentrations (used for ACH
measurements and as an indicator of occupancy), and HVAC char-
acteristics again allowed for stronger interpretation and extrapo-
lation of the results. The HVAC system was known to operate under
“economizer” conditions, varying the fraction of outdoor airflow
rate to total airflow from 25% to 100% depending on outdoor air
(OA) temperatures and heating and cooling requirements.
Although OA fraction measurements were not made in this study,
the authors suggest the building would likely have been near 50%
OA during test conditions, based on the measured values of indoor
and outdoor temperatures. Before entering the classroom, air in the
HVAC system passed through a MERV 8 particle filter; the authors
also measured the in-situ size-resolved filtration efficiency of this
filter using an optical particle counter. Air samples included PM; 5
and PMyg in indoor, outdoor, and HVAC supply environments;
HVAC filter and floor dust was mechanically extracted and then
sieved and resuspended to obtain PM;s5, PMjg, and PMs7; mass
fractions. Human occupancy increased the total aerosol mass and
bacterial genome concentration in both PM; 5 and PMjg size frac-
tions in indoor air. Floor dust contained more bacterial genomes on
a per mass basis than indoor aerosols. Comparisons between bac-
terial populations in indoor air and during unoccupied and occu-
pied periods further suggested that resuspended floor dust and
direct human shedding were important contributors to bacterial
populations in indoor air. These very detailed building character-
izations again allowed for uniquely quantitative estimates and in-
terpretations of their results.

Focusing less on environmental or operational characteristics
and more on indoor sources and cleaning activities, Medrano-Félix
et al. (2011) identified and quantified the presence of Escherichia
coli, Staphylococcus aureus, Salmonella, hepatitis A, and norovirus in
60 homes in Mexico and assessed the effect of chlorine and
ammonium based disinfectants on these communities [27]. Surface
sample sites included kitchens (counter top, sponge, dishcloth,
cutting board, and sink), bathrooms (sink, toilet bowl, toilet seat,
and shower tile), pet areas (toy sites) and children's areas (toy
sites). In 30 homes that followed a disinfection protocol, there was a
significant reduction in the presence of the study's target microbes
compared to a control group that did not utilize a disinfectant
protocol, suggesting that cleaning patterns are very important to
assess accurately for better interpretation of surface sample results.

Dunn et al. (2013) examined the diversity of bacterial commu-
nities in nine distinct locations within 40 homes in North Carolina
[24]. Surface sampling included: kitchen cutting board, kitchen
counter, shelf inside refrigerator, toilet seat, pillowcase, exterior
handle of main door into house, television screen, and the upper
door trip on exterior and interior doors (assumed to be infrequently
cleaned and representative of indoor and outdoor bioaerosols via
long-term particle deposition). Each of the sampled locations
harbored bacterial communities that were distinct from one
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another. Surfaces that were regularly cleaned typically harbored
lower levels of diversity than surfaces that were not frequently
cleaned. They also examined whether the variability in bacterial
diversity across homes could be attributed to outdoor environ-
mental factors, some indoor factors, or occupants of a home. The
presence of dogs had a significant effect on community composi-
tion within the homes as they harbored more diverse communities
and abundances of dog-associated bacterial taxa. There was also a
significant correlation between the types of bacteria deposited on
surfaces outside the home and those found inside the home, sug-
gesting that microbes from outdoors can have a direct effect on the
microbial communities living on surfaces inside homes. This study
further demonstrates how cleaning and occupants, human and
non-human alike, can have a significant impact on indoor microbial
communities.

Gaiizére et al. (2013) characterized the diversity and dynamics
of airborne microorganisms in one room in the Louvre Museum
during a period of 6-months [58]. The indoor airborne bacterial
diversity was shown to be relatively stable over time, while the
corresponding fungal community was less stable. The room was
described as being air-conditioned with two open doors and no
windows, although no information on HVAC system operation was
reported. The number of visitors was counted during measure-
ments to determine occupancy, with an average of 250 occupants
entering the room during one sample collection. Air samples were
collected at daily, weekly, and monthly intervals. T/RH was
measured continuously, in addition to size-resolved airborne par-
ticle concentrations with an optical particle counter. Air samples
were collected using an experimental bioaerosol collector that was
similar to a wetted wall cyclone [59]. T/RH were relatively constant
and approximately 90% of airborne particles measured with the
OPC were between 0.3 and 0.5 um. Concentrations were similar
over all sampling periods. No correlations in bacterial communities
were observed with building environmental parameters, although
most likely because they were quite stable throughout the opera-
tion of the highly controlled museum environment.

Combined, the studies in this section utilized more detailed
measurements of building characteristics, environmental condi-
tions, and human activities that often had a large impact on indoor
microbial communities, or perhaps more importantly, allowed for
novel, quantitative inference from their results to other indoor
environments. The success of this particular group of recent studies
provides motivation for our suggestions for a standardized suite of
tools that can be used for collecting robust built environment data
in future investigations of the microbiology of the built environ-
ment, as described in the next section.

3. Tools for improving built environment data collection for
microbial ecology investigations

To inform the increasing number of microbial diversity studies
being conducted in indoor environments, here we suggest a large
suite of building environmental and operational characteristics that
can be measured in robust and standardized ways as needed for
particular study designs. These parameters and measurement
techniques are detailed in the following sections and summarized
along with key references for specific measurement or assessment
methodologies in Table 1. Collectively, we identify this suite of
likely influential ‘building science measurements’ for more robust
collection of built environment data. These parameters and tech-
niques are meant to build on those already introduced in the
recently developed MIXS-BE package [35] that describes minimal
built environment metadata to collect in microbial ecology studies
(including qualitative building properties such as building type,
HVAC system type, and lighting type, as well as core environmental

data such as air temperature and RH, surface temperature, pH, and
moisture, and human occupancy), primarily by providing more
justification, detail, and context for these important parameters
and others from the perspective of building engineers and building
scientists. Once these built environment data are collected, there
may be additional opportunities to improve analysis methods to
explore connections between built environment and microbial
ecology datasets.

This suite of building science measurement recommendations
can be categorized generally into (1) building characteristics and
indoor environmental conditions, (2) HVAC system characteriza-
tions and ventilation rate measurements, (3) human occupancy
measurements, (4) surface characterizations, and (5) air-sampling
and aerosol dynamics (the latter is not entirely considered ‘built
environment data’ but is important for standardized microbial
data collection and deserves attention in this work). These built
environment data collection efforts are informed in large part by
evidence of their importance for influencing microbial commu-
nities on indoor surfaces and in indoor air, as well as their
importance for general building characterizations in other indoor
environmental research. We should note, however, that this is not
necessarily an exhaustive list of parameters or methods, but
represents our best attempt to move toward a standardized suite
of available measurements given our current level of knowledge.
We should also note that our intent is primarily to provide mi-
crobial ecologists with knowledge of many of the tools available
for this type of data collection, as well as some of the constraints
and considerations for these tools. Not all measurement types will
be appropriate for all study designs or budgets. However, we
firmly believe that more standardized building operational and
environmental measurements can serve to maximize the amount
of extrapolation or translation between indoor environments that
can occur among otherwise disparate studies if integrated care-
fully into study designs.

3.1. Building characteristics and indoor environmental conditions

Several basic building characteristics and indoor environmental
measurements are fundamental to any indoor environmental
exploration. Important building characteristics include age of
construction, floor areas and volumes, material descriptions, type
of use, typical occupancy, history of water damage, occupant
complaints, HVAC system type and operation (i.e., in heating or
cooling modes), ventilation method and source, the use of hu-
midifiers, and many others, as many of these have already been
shown to influence microbial communities and are well known to
influence other aspects of indoor air and building operation.
Important indoor environmental conditions, including air temper-
ature (T), relative humidity (RH), absolute humidity, and light levels
in the sample space, may have particular influence on microbial
diversity outcomes [33]. Portable, off-the-shelf battery-powered
sensors can accurately and inexpensively measure and log these
data for long periods of time. Long-term data logging is important
for assembling a history of indoor environmental conditions that
may affect microbial growth and survival, rather than relying upon
spot measurements during the time of testing, although parame-
ters such as measurement interval and length may vary depending
on study design.

Indoor T/RH has been shown to be an important influential
parameter in a number of previous laboratory and field studies of
the microbiology of the built environment. In controlled laboratory
studies, T/RH have been shown to have large (often competing)
influences on the survival of a number of bacteria and viruses
[33,60—70], as well as fungal allergenicity [71]. In field studies,
indoor temperatures have been positively associated with fungi
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and negatively associated with bacteria and total inflammatory
potential (TIP) of cell assays in several homes in Denmark [72]. In
the same study, indoor RH was also positively correlated with in-
door fungi concentrations. In a study of child day-care centers in
Turkey, differences in airborne bacterial communities were seen
with some (varying) outdoor environmental conditions, which
could also have manifested in differences in indoor environmental
conditions such as temperature, relative humidity, or HVAC oper-
ation [73]. For example, the amount of endospore-forming Gram-
positive bacteria increased as the amount of sunlight and temper-
ature increased and as relative humidity decreased (all measured
outdoors). In fact, sunlight is known to have bactericidal powers
that inhibit bacterial growth, even through panes of glass, and it has
long been thought that sunlight (in addition to increased ventila-
tion) could reduce the spread airborne infections in hospitals,
although evidence is quite limited and suspected mechanisms are
not entirely environmental [74]. More recently, a study in primary
schools in Australia found that air temperature (measured over the
previous 24 h) was negatively associated with concentrations of
endotoxin in indoor air and positively correlated with endotoxin
loads in floor dust [75]. Additionally, lower airborne endotoxin
concentrations were observed during periods of higher levels of
relative humidity, and T and RH appeared to act separately.

Measurements of T/RH may be particularly important inside
HVAC systems as well; bacteria and fungi have been shown to grow
at an accelerated rate with higher temperatures and higher RH in
air-conditioning ducts subjected to dust deposition [76]. Other
studies have shown that a substantial amount of dust can accu-
mulate due to particle deposition on air-conditioning ducts
[77—79]. There are complex interactions between moisture and
building materials that may be important to characterize as well.
For example, in a recent study of day care centers in Sweden, fungal
DNA levels were shown to be higher in buildings at risk of damp-
ness, in rooms with linoleum flooring materials, and in buildings
with rotating heat exchangers [80]. T/RH measurements should
also be used to calculate absolute humidity ratios, or the mass of
water vapor per mass of dry air, regardless of temperature [81], as
there is some evidence that absolute humidity can influence
microorganism survival [82], mold growth on building materials
[83], airborne endotoxin [84], and the inactivation or survival of
influenza viruses on surfaces [85—87]. Thus, at a minimum, we
suggest that long-term measurements of T/RH, absolute humidity,
and possibly artificial and/or natural light levels be made and
recorded in future microbial diversity studies given appropriate
study design and resources, as many have already done.

3.2. HVAC system characterizations and ventilation rate
measurements

Another core set of parameters that can be measured in order to
accurately characterize building operation includes HVAC system
airflow rates and ventilation rates in the space being sampled.
HVAC system operation and ventilation performance will greatly
impact indoor concentrations of particles, including those of bio-
logical origin, and thus are of primary concern for indoor air sam-
pling. There are also a wide variety of ventilation and airflow
distribution systems in buildings that should be well characterized
in both qualitative and quantitative ways to allow for meaningful
interpretation of results from any indoor environmental investi-
gation [88].

A number of specific HVAC factors have been linked to microbial
growth, including temperature, humidity, air velocity, type and
location of filter (including removal efficiency and type of media),
and others [89,90]. Another important parameter is whether or not
an HVAC system is actually operating, particularly in smaller

buildings where HVAC systems may operate only in response to
heating and cooling loads [91]. Air change rates (ACH) have also
been shown to be an important influence on indoor microbial
communities; for example, increases in ACH were correlated with
increases in indoor fungi, a decrease in indoor bacteria, and a
decrease in inflammatory response in granulocyte cells in a recent
study of homes in Denmark [72]. Therefore, most if not all of these
parameters should be well characterized in any indoor microbial
investigation.

In addition to influencing airborne microbial concentrations,
HVAC systems can also impact settled dust on surfaces. For
example, high particle filtration efficiency and high HVAC recircu-
lation rates (the airflow rate through an HVAC system divided by
the volume of the space it serves) may selectively remove many
particle sizes at a rate greater than their rates of deposition to
surfaces. This could impact the amount of biomass that settles to
surfaces, depending on particle size and surface characteristics.
Size-resolved particle deposition rates to a variety of surfaces may
also be important to characterize over a long period of time [92].
The combined effects of airspeeds, mixing characteristics, and the
surface area-to-volume-ratio will also alter deposition rates of
particles to surfaces, varying by as much as an order of magnitude
[93,94]. Particle deposition rates can be measured relatively easily if
simultaneous ACH measurements are also made [94,95].

There are a variety of tools to measure airflow rates through
HVAC systems, many with varying degrees of difficulty, accuracy,
and equipment requirements [96]. Airflow rates can be measured
either within air handling units (depending in large part on the size
of the equipment) or at individual supply diffusers and return
grilles. There are several widely-accepted and standardized ways to
measure airflow rates at or near the air handling unit [97],
including: (i) pressure readings can be correlated to fan curve data
provided by the fan manufacturer; (ii) flow metering devices such
as venturi meters, flow nozzles, orifice meters, or rotameters can be
installed directly into the HVAC system; (iii) air velocity can be
measured using pitot tubes or hot-wire anemometers traversing
the entire area of a duct system, particularly if general guidelines
for the number and spacing of measurement points are followed
(i.e., equal-area or log-Tchebycheff methods can take into account
the distribution of air velocity from bulk air in the duct to the ve-
locity near the edges and corners of ducts), or (iv) pressure
matching with a calibrated fan. Particularly for small and medium
sized HVAC systems, there are also highly accurate airflow metering
plates available for rapid measurements of air handler flow rates
[98].

Aside from airflow rate measurements at the air handler, it may
be critical to measure the operational cycles of the HVAC system
and the actual amount of airflow entering or leaving a space.
Runtime fractions can be assessed using a combination of supply
temperature measurements [99,100], measurements of the elec-
trical power draw of AHU fans and/or compressor units [101,102], or
by vibration or electromagnetic sensors on AHU blowers or
compressor motors [103]. Supply temperature measurements can
also reveal whether an HVAC system is operating in heating or
cooling modes.

Airflow rates at air handling units may also differ from the actual
amount delivered to a space because many buildings have signifi-
cant duct leakage to the exterior [101,104,105]. Duct leakage may
need to be accounted for and can be done by following standard-
ized test methods [106]. There are also other ways to measure
airflow rates leaving supply diffusers or entering return grilles,
including: (i) airflow capture hoods; (ii) air velocity readings
correlated to diffuser characteristics provided by the manufacturer;
(iii) duct traverse air velocity measurements; and (iv) pressure
matching with a calibrated fan. Once specific airflow rates have
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been characterized in an environment, there are several methods to
continue to record flow data over time without the need for in-
terventions by field-workers. For example, airflow rates (which are
invasive to measure) can be correlated to duct pressure measure-
ments (which can be easily measured and recorded on a portable
data logger) [102,107—109].

Once airflow rates are well characterized and recorded over
time, the rate of outdoor air supplied by the ventilation system can
also be measured and recorded. Many building automation and
control (BAC) systems report these values, although accuracy is
often an issue and data cannot always be accessed or trusted.
Outdoor air ventilation rates can be made by combining knowledge
of supply flow rates with the fraction of outdoor air in the air
stream. The fraction of outdoor air in an air stream can be measured
in several ways, for example by measuring CO, concentrations in
recirculation, outdoor, and supply airstreams of an air handling unit
[110].

Ventilation rates and interzonal airflows can also be measured
directly in test environments using a variety of tracer gases
[111—-115]. Standardized tracer gas methods include simple injec-
tion and decay, constant injection, and constant concentration
[112]. Both active and passive tracer gas injection and sampling
methods can be used as well. Active techniques allow for time-
varying ACH measurements but involve real-time monitoring of
tracer gases, which can introduce prohibitive costs and labor re-
quirements for large field studies. Passive techniques such as the
perfluorocarbon tracer (PFT) method utilize inexpensive passive
tracer sources and samplers, but are limited to measuring longer-
term time-averaged ACH [116]. Particular care should be taken to
achieve proper mixing and tracer gas distribution, as well as se-
lection of a nonreactive, nontoxic, inexpensive, and easily detect-
able tracer gas.

Natural ventilation rates (i.e., those caused by airflow through
window openings) can be more difficult to accurately quantify than
outdoor air supplied by a mechanical HVAC system [117—121]. Ata
minimum, the configuration of window openings (including the
size and orientation) should be noted. One recent microbial
investigation used velocity measurements at two locations within a
window and video-recording of flags in order to show wind di-
rection at a window [23]; however, other, more accurate, methods
have also been used, such as using a grid of 32 point pitot tube
arrays measuring at very high frequency [117]. There are also many
models for predicting ventilation performance in buildings that can
be used in conjunction with measurements of meteorological
conditions [122].

3.3. Human occupancy measurements

Human occupancy is a major driver of indoor microbial com-
munities through a combination of direct human shedding, resus-
pension from flooring, and emission from respiratory activities
(e.g., sneezing, coughing, or even breathing); thus, not only is the
presence of people in an indoor environment an important deter-
minant of microbial diversity, but so are their activities and the
surfaces with which they come in contact [21,24,25,30,123,124]. But
how does one accurately measure human occupancy or activity?
Several recent studies that measured microbial diversity during
scripted, short-term events simply recorded occupancy by peri-
odically counting the number of people in the sample space
[13—15,58]. For longer-term studies, there are a variety of ways for
assessing human occupancy and/or activity, although none are
standardized and many depend on the design and construction of
the particular environment in question. Occupancy or activity
monitoring methods include video cameras equipped with people-
counting software [125—128], optical or infrared tripwires that

count people crossing a particular area, such as doorway [129,130]
and proximity or light sensors that can detect movement or lack of
movement near a specific location [131—-133], CO; sensors coupled
with dynamic mass balances on indoor CO, concentrations
[134—138], high-resolution pressure sensors in HVAC systems that
detect fluctuations based on door closing or other activities [139],
radio-frequency identification (RFID) [140—143] and Bluetooth
tracking systems [144—146], acoustic sensors that detect noise
levels [130], and others [147]. Although some of these devices can
suffer from large uncertainty and calibration issues, they can also be
combined with sophisticated algorithms to provide robust de-
terminations of time-varying human occupancy and/or activity
[148—151].

Some occupancy measurement technologies are also more
appropriate for some environments than others. For example,
doorway break sensors are more appropriate for smaller volume
environments where location within the room may not be as
important as mere presence in the room. Video camera systems can
provide location detection in smaller environments but result in
prohibitive costs in larger environments. Additionally, beam break
sensors and some video camera systems are more appropriate for
environments with a limited number of entryways. Additionally,
upgrading from non-directional functionality to directional
doorway break sensors can greatly increase costs with current off-
the-shelf equipment, which often makes using them in environ-
ments with many entrances and exits cost prohibitive. Alterna-
tively, RFID and Bluetooth tracking systems require a known
population that can be pre-screened and identified prior to entry;
this may work for certain environments such as hospitals or offices,
but not for high turnover areas such as retail environments. Prox-
imity sensors can be very helpful for sensing occupancy near
particular locations, but can suffer in terms of accuracy, as lack of
movement does not necessarily mean lack of occupancy. Finally,
CO; sensors can be good identifiers of human occupancy but suffer
from several issues, including prohibitive costs for highly accurate
sensors with minimal drift, variable and unknown CO, emission
rates from individuals [135,152], non-well-mixed environments
lead to errors in mass balances, and other HVAC system charac-
teristics such as ACH must also be well-characterized. Unfortu-
nately there are no standardized methods for measuring and
recording human occupancy in indoor environments, but there are
several helpful options from which to choose depending on user
needs and budget, as shown in Table 1.

3.4. Surface characterizations

The last type of building environmental characterization that we
should mention involves meaningful characterization of surfaces
from which microbes are sampled. Surfaces can harbor a wide array
of settled dust and adsorbed compounds that may affect microbial
communities on them. Basic surface characteristics such as
porosity, composition, and environmental conditions immediately
adjacent to materials can all affect microbial community structure,
growth, and survival [33,153,154]. In fact, environmental conditions
of microbial-surface interfaces have been thought to play a greater
role in influencing microbial activity than basic interface charac-
teristics themselves [155].

For example, Andersen et al. (2011) both qualitatively and
quantitatively assessed fungal diversity growing on damp or water-
damaged building materials [ 156]. More than 5300 surface samples
were taken by means of contact plates with agar from materials
with visible fungal growth. Different fungi were correlated with
different distinct classes of surfaces, grouped by (i) gypsum, plaster,
and wallpaper, (ii) wood and plywood, and (iii) concrete and other
floor materials. Among the samples gathered, plaster was most
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likely to have had fungal growth from water damage, followed by
concrete, wood, wallpaper, gypsum, and several others. No infor-
mation was gathered on other building characteristics, nor another
important parameter referenced in the paper: water activity.

The water activity of a building material, which can be
approximated as the ratio of the vapor pressure of water in a ma-
terial to the vapor pressure of pure water, is a major determining
factor for fungal growth [83]. Water activity varies with tempera-
ture and the type of material; the longer a material's water activity
is over 75%, the greater risk of fungal growth [157], although
different fungi have different preferences [158]. Because water ac-
tivity is difficult to measure directly, a measure of the equilibrium
relative humidity in a small sealed chamber installed on the sample
surface is often used.

Last, the frequency of cleaning of particular sample surfaces is
also an important parameter to track over time. Cleaning will
impact settled dust and adsorbed compounds, as well as the mi-
crobial mass found on surfaces. An example of the importance of
cleaning frequency involves human hands; a recent study showed
that the microbial community composition on people's hands was
highly influenced by the time since their last hand washing [159].
The same can be said for building material surfaces [25,27,45].
There may be opportunities to advance methods to accurately
assess surface cleaning, perhaps by combining proximity IR sensors
or video surveillance with water activity measurements.

3.5. Air sampling and aerosol dynamics

Finally, air sampling and aerosol dynamics represent another
category of measurements for consideration in indoor microbial
investigations. We consider aerosol dynamics as built environment
data because they can be assessed with real-time instrumentation
[57,79,94,95,160] and they influence both airborne and surface-
deposited microbial communities. In particular, indoor particle
deposition rates (and total loss rates) can easily vary by two orders
of magnitude or more depending on particle size in the same in-
door environment [161], or by two orders of magnitude or more
across indoor environments, depending on a large number of fac-
tors including air speeds, furnishings, and surface characteristics
[57], ventilation rates and sources [94], temperature [162], particle
density [92], and surface orientation [163].

Additionally, a wide range of air sampling devices was used in
the aforementioned studies that measured airborne microbial
community composition, diversity, and/or abundance. Although air
sampling techniques are not necessarily considered ‘built envi-
ronment data’, a lack of standardization in air sampling method-
ologies substantially limits our ability to compare results from one
environment to another and thus a discussion of air sampling
methods is included herein. Recently used air sampling methods
have included liquid impingers [23,31], size-resolved [13,15] and
non-size-resolved [14,164| impaction-based filter methods (with a
variety of filter media ranging from PTFE, polycarbonate, or mixed
cellulose ester membrane filters to quartz fiber or gelatin filters),
petri dishes suspended in air [45,164|, HVAC particle filters
installed in air handling units [12,32], and an experimental sampler
similar to a wetted wall cyclone [58]. A recent meeting report re-
views many of the challenges of bioaerosol sampling [165]. Only a
few studies have compared the ability of various bioaerosol sam-
plers to deliver repeatable results using molecular analysis tech-
niques [166,167] or for various analysis techniques to deliver
repeatable microbial community results from a particular air
sampling method [168]. Some airborne collection methods may
vary widely in their collection efficiencies for different sizes of
bioaerosols, as well as in their DNA extraction efficiency. For
example, Hospodsky et al. (2010) determined qPCR accuracy,

precision, and method detection limits for bacterial cells and fungal
spores collected on a variety of aerosol filters, including PCTE
membrane filters and quartz fiber filters [169]. DNA recovery effi-
ciencies were low; not accounting for extraction efficiencies was
shown to underestimate true aerosol concentrations by 10—24
times.

Frankel et al. (2012) compared different microbial sampling
methods for identifying culturable fungi and bacteria, endotoxin,
and the total inflammatory potential (TIP) of both airborne particles
and settled dust [170]. Polycarbonate- and Teflon-filter-based
airborne samplers yielded significantly higher microbial levels
than a common impinger, although results were highly correlated.
The use of an electrostatic dust fall collector (EDFC) [171] yielded
higher levels of fungi, endotoxin, and total inflammatory potential
compared to a dust fall collector (DFC); dust samples acquired by
vacuum cleaners were more similar to those captured by the EDFC
than the DFC. Another recent study showed that two different solid
impactors had similar collection efficiencies for culturable bacterial
sampling, whereas a liquid impinger and a filter-based sampler
were more efficient for total bacterial sampling [172]. Bioaerosol
samplers not only have a wide variety of collection and extraction
efficiencies, but they also differ in terms of practical concerns.
Bioaerosol samplers operate at airflow rates ranging from 4 L min~!
[14] to as much as 300 L min~" [31] or even 1000 L min~' [58]. The
advantage of higher flow rates is that more biomass can be
collected over shorter amounts of time and detection limits can be
overcome. However, there are some disadvantages to higher flow
rates in sampling systems. For example, removal by the sampling
pump may become competitive with air change rates in smaller
volume environments at high flow rates, which could alter aerosol
dynamics in the space. There are also practical size and noise
concerns associated with larger pumps used for higher flow rates.
Advantages of passive sampling techniques such as suspended petri
dishes are that there are no pump requirements, but they may
introduce bias by oversampling larger particle sizes that are more
likely to settle than smaller particles.

One recent development in air sampling mechanisms has been
the use of HVAC filters to semi-passively collect bioaerosols, inte-
grated over time. Tringe et al. (2008) used HVAC particle filters
installed in air handling units (AHUs) to sample air microbiota in
two shopping centers in Singapore [12]. HVAC filter sampling is
advantageous because an extremely large amount of air passes
through filters on a daily basis. For example, approximately
6 x 108 m? of air passed through the filters in this study for 14 h per
day over a period of approximately 90 days (~1260 h of operation).
Traditional bioaerosol sampling methods utilizing flow rates of
4-1000 L min~! would have provided only ~3 x 10% to ~8 x 10* m>
for sampling, reducing the amount of biomass available for analysis
by 2—4 orders of magnitude. Each filter was classified as having an
arrestance efficiency of 90% for 1 pum particles, although size-
resolved data were not reported. Similarly, Noris et al. (2011)
compared bacterial and fungal concentrations and communities on
residential HVAC filters and found that microbial communities on
the filters were not different from those present in compose
month-long indoor air sampling via impingers [173]. HVAC filter
dust was also similar to that collected on surfaces, suggesting that
high efficiency HVAC filters could be used as a long-term integrated
measure of microbial communities in indoor air.

Most recently, Hoisington et al. (2014) compared six different air
sampling methods, including settled dust, HVAC filter, and four
bioaerosol samplers (BioSampler®, button sampler, personal envi-
ronmental monitor, and wetted-wall cyclone) [167]. They found
that microbial communities from settled dust and HVAC filter dust
clustered closely together and were more diverse than microbial
communities from the four bioaerosol samplers. Although the
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Parameter(s)

Measurement/collection
method

Important considerations

Reference(s)

1. Building characteristics and environmental conditions

Basic building
characteristics

Indoor T/RH, absolute
humidity, and artificial/
natural light

Outdoor T/RH, absolute
humidity, and light

Surveys, visual assessments

Portable, off-the-shelf,
battery-powered sensors
with data loggers

Publicly available
meteorological data or local
weather station
installations

2. HVAC system characteristics and ventilation rates

Spot measurements of
airflow rates at AHU

Spot measurements of
airflow rates at
individual supply
diffusers or return grilles

Continuous flow
measurements

Outdoor air (OA) fraction in
mechanical HVAC
systems

Air change rates (ACH)

Correlate pressure readings
to fan curve data by the fan
manufacturer

Traverse velocity with pitot
tubes or hot-wire
anemometers (multiplied
by duct area)

Pressure matching with
powered, calibrated fan

Airflow metering plates

Airflow capture hood

Air velocity or pressure
readings correlated to
diffuser characteristics

Traverse velocity with pitot
tubes or hot-wire
anemometers (multiplied
by duct area)

Pressure matching with
powered, calibrated fan
operating as flow hood

Flow meters installed
directly into HVAC system
(e.g. venturi meters, flow
nozzles, orifice meters,
rotameters)

Duct pressure correlations
with spot flow
measurements

Tracer (e.g., temperature,
CO,, or SFg) in RA, SA, and
OA

Zone tracer testing (e.g.,
CO,, SFg) coupled with
room volume

Building automation
system (BAS) readings,
including economizer
settings

Active tracer gas (e.g., CO;
or SFg)

Age of construction, floor
areas and volumes, material
descriptions, type of use,
typical occupancy, history
of water damage, occupant
complaints, HVAC system
type and operation,
ventilation method and
source, the use of
humidifiers, etc.

Storage capacity, accuracy,
precision, battery power

Data availability,
installation location

Requires knowledge of fan
manufacturer and in-situ
verification

Requires knowledge of duct
areas, high uncertainty

Typically greater accuracy
than capture hood, limited
to smaller systems, requires
clear access to AHU
Requires modifications for
larger AHUs

Limited accuracy under
some conditions

May not accurately reflect
in-situ performance,
requires knowledge of
specific manufacturer
Requires knowledge of duct
areas, high uncertainty

Typically greater accuracy
than capture hood

Invasive, requires HVAC
access, data logger, and
power

Simple and cost-effective,
requires data logger and
power

Accuracy issues at low
concentration changes,
high costs for accurate
sensors, requires injection,
data logger, and power
Costly, labor intensive,
requires assumptions for
mixing

Often low accuracy, sensor
reliability, requires access
to facility data, typically
only present in large
buildings

Costly, labor and
equipment intensive,

[19,45,49,174]

[175-178]

[179—181]

[182]

[96,105,160]

[97,106,183,184]

[98,107,109,185,186]

[105,187,188]

[189]

[96,105,160]

[97,105,106,183,184]

[96,190]

[102,107—109]

[110,191]

[111-115,192]

[193]

[111-115]

(continued on next page)
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Parameter(s) Measurement/collection Important considerations Reference(s)
method
requires injection and well-
mixed environment
Passive tracer gas (e.g., PFT) Limited to longer-term [116,194]
time-averaged air change
rates
Natural ventilation rates Pitot tube array Labor intensive, invasive [117]
through windows
HVAC on/off Current draw on AHU fan or Requires HVAC access and [101,102]
AC compressor data logger
Supply temperature Inexpensive and simple, but [99,100]
measurements issues with averaging
times; only works for
heating or cooling modes
Vibration or magnetic field Requires equipment [103]
training period,
inexpensive field sensors
are commercially available
Duct leakage fractions/ Fan pressurization, delta-Q, Time intensive [106,195,196]
flows or nulling tests
Particle removal efficiency Upstream/downstream Expensive instrumentation, [15,79]
of HVAC filters particle concentrations requires HVAC access
Whole-zone elevation and Expensive instrumentation, [79]
decay time-consuming, requires
mixing assumptions and
knowledge of HVAC airflow
rates, but can also be
gathered from long-term
time-resolved data
3. Human occupancy/activity measurements
Number of occupants Manual observational Not feasible for long-term, [13]
counts continuous sampling
Uni-directional IR beam Better for small [197,198]

Occupant profiles

Non-human occupants

Cleaning activities

Activity/resuspension

4. Surface characterizations
Surface temperature

break people counting

Directional beam break or
thermal people counting

Video + people counting
software

Movement sensors based
on IR proximity, light, or
acoustics

CO, mass balance

Pressure sensors in HVAC
systems

RFID tags or Bluetooth
tracking

Survey questions: age,
gender, culture,
socioeconomics

Survey questions: pets,
typical activities

Visual observation,
questionnaires

Optical particle counters

Thermistors or
thermocouples

environments with limited
number of entrances/exits,
limited accuracy

Higher accuracy, costlier,
limited number of
entrances/exits, requires
power

Costly in larger
environments, requires
power

May not represent true
occupancy

Costly, variable emission
rates, requires well-mixed
environment, well
characterized ventilation,
and power

Requires high-resolution
data loggers, accuracy
unknown
Pre-screening/ID required,
provides continuous
monitoring among people
and between locations

Requires careful survey
design

Requires careful survey
design

Data quality and reliability

Expensive instrumentation,
requires power

Data logging capabilities
preferred over spot
measurements

[129,130,197—200]

[125—128,199]

[130-133]

[134-138]

[139]

[140—146]

[201]

[24,202,203]

(27]

[13,204]

[155,205,206]
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Parameter(s) Measurement/collection Important considerations Reference(s)
method
Water activity (or Approximated as relative Only provides surrogate [207,208]
equilibrium relative humidity in a sealed measure, few commercial
humidity) chamber installed on devices
sample surface
Porosity, water vapor Vacuum saturation tests, Difficult to measure in-situ, [209-212]
permeance, moisture SEM, NMR, capacitance some are costly and
content, and other methods, water uptake destructive techniques
moisture properties experiments, and others
Cleaning strategies/details Records of cleaning Potential data quality issues [25,27,213]

Building material/
composition assessment
and survey of moisture
events

Identification of highly-
touched surfaces

5. Air sampling and aerosol dynamics
Particle sampling

Particle deposition rates

products and schedule, or
microbial loads

Qualitative descriptions,
surveys, and quantitative
material analysis

Visual assessment or
proximity IR

Cascade impactors

Liquid impingers

Cyclones

Passive/HVAC filtering

Settling plates or dust fall
collectors (DFC or EDFC)

Whole-zone elevation and
decay

with surveys, issues with
standardization on
microbial loads

Potential data quality issues
with surveys, material
survey is time consuming

Time-consuming for visual
assessment, inaccuracies in
proximity sensors

Can be particle size-
selective, quantitative
accounting of volume of air
sampled, mechanical forces
can rupture cellular
membranes and reduce
culturing viability, issues
with pump noise, power
requirements

Mechanical forces can
rupture cellular
membranes, pump noise,
power requirements
Particle size cut-off issues,
pump noise, power
requirements

No pump or power
requirements, silent, large
air flows collect more
biomass, difficult to extract
DNA, biases towards certain
particle sizes based on filter
efficiency

Silent, inexpensive, no
power requirements, may
bias toward larger particles

Expensive instrumentation,
requires ACH
measurements

[19,156,214,215]

[17,159]

[13—15,165]

[23,31,165]

[58,59]

[12,32,165,168,173]

[45,171,216]

[57,79,94,95,160]

bioaerosol samplers were collocated and sampled over the same
period, they did not yield the same bacterial community, with only
13—16% of bacteria and 33—34% fungi common across all four
bioaerosol samplers. These results indicate that sampler design and
operation may substantially alter the microbial community
sampled and should be considered in detail when interpreting re-
sults. This work also suggests that utilizing a variety of sampling
techniques in sample environments may provide a more complete
representation of the true microbial community present.
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