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A  large  number  of  randomly  interacting  variables  combine  to  dictate  the  energy  performance  of  a  building.
Building  energy  simulation  models  attempt  to  capture  these  perturbations  as  accurately  as  possible.
The  prediction  accuracy  of building  energy  models  can  now  be better examined  given  the  widespread
availability  of  environmental  and  energy  monitoring  equipment  and  reduced  data  storage  costs.  In this
paper a set  of  two  calibrated  environmental  sensors  together  with  a weather  station  are  deployed  in  a
5-storey  office  building  to examine  the  accuracy  of  an EnergyPlus  virtual  building  model.  Using  American
Society  of Heating,  Refrigerating  and  Air-Conditioning  Engineers  (ASHRAE)  Guide  14  indices  the  model
odel calibration
easured energy data

ocal weather data
uilding performance simulation
nergy Plus
ourly data

was  calibrated  to achieve  Mean  Bias  Error (MBE)  values  within  ±5%  and  Cumulative  Variation  of  Root
Mean  Square  Error (CV(RMSE))  values  below  10%.  The  calibrated  EnergyPlus  model  was  able  to  predict
annual  hourly  space  air temperatures  with  an  accuracy  of  ±1.5 ◦C for  99.5%  and  an  accuracy  of  ±1 ◦C  for
93.2%  of the  time.

©  2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license

ensor deployment
ase study building

. Introduction

The origins of building energy modelling can be traced back as
arly as 1920s with the development of response factor method
or transient heat flow calculations [1]. The availability of comput-
rs in the 60s heralded a new dawn when, especially from early
0s the HVAC companies developed energy models for heating
nd cooling load calculations [2,3]. This trend accelerated as the
0s oil crises raised building energy standards, leading to greater
nergy efficiency and modelling methods that continue to this
ay [4]. Whilst initially a design phase tool, increasingly building
nergy simulation (BES) models of existing buildings are developed
o aid research into model-based controls, optimisation, energy

onservation measures (ECM) and financial appraisals [5–7]. The
reation, maintenance and updating of virtual building models
herefore increasingly require greater levels of accuracy to enable

ore meaningful studies.

Abbreviations: AHU, air handling units; BES, building energy simulation; BIM,
uilding information modelling; BWM,  Box whisker mean; CV(RMSE), cumulative
ariation of root mean square error; ECM, energy conservation measures; EPW,
nergyPlus weather (file); HAM, heat, air and moisture (Modelling); HVAC, heat-
ng, ventilation, air-conditioning and cooling; MBE, mean bias error; PIR, passive
nfra-red.
∗ Corresponding author. Tel.: +44 0 191 208 5869.

E-mail addresses: m.royapoor@ncl.ac.uk, Mohammad.Royapoor@ncl.ac.uk
M.  Royapoor).

ttp://dx.doi.org/10.1016/j.enbuild.2015.02.050
378-7788/© 2015 The Authors. Published by Elsevier B.V. This is an open access article u
(http://creativecommons.org/licenses/by/4.0/).

In the last few years the widespread deployment of multifunc-
tional environmental sensors, mandatory sub-metering of building
energy consumptions, longitudinal data collection and the inter-
net of things have all led to substantial amounts of building and
energy related data being made available. The richness of digi-
tal infrastructure output has grown to an extent comparable to
biological ecosystems in all their complexity [8]. Within building
related applications, the availability of both simulated and mea-
sured energy and comfort data gives the issue of model calibration
greater potency. Building model calibration is a measure of model
accuracy, which despite increasing sophistication still suffers vast
under-determined parameter space [9].

The aim of this paper is to conduct an energy calibration using
an EnergyPlus model before examining the match between simu-
lated and actual space air temperatures. This two-tiered objective
is perused through the following steps:

1 Using an office building as a platform, a first stage energy cal-
ibration of the model is performed using 2012 hourly-metered
values.

2 Space air temperature is collected for the same period using envi-
ronmental sensors to enable an assessment of zone temperature

prediction accuracy of the calibrated EnergyPlus model.

The calibration process follows ASHRAE guideline 14 recom-
mendations. This guideline was  originally developed to quantify
energy saving potentials of proposed retrofit schemes, and is among

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Comparison of energy benchmarks for existing UK open-plan office buildings
(KWh/m2 of treated floor area).
Fig. 1. The building’s heavily glazed front aspect faces +34◦ from due south.

hree current guides that define virtual model acceptance criteria
10–12].

.1. Case-study building

A modern 5-storey sandstone office inaugurated in 2010 is the
latform for the work undertaken here (located 54◦58′N, 1◦36′W).
t north, east, south and west orientations solar control glazing
over 54%, 29%, 87% and 42% of the facades respectively (hence
verall the building’s external facade is 53% glazed). The south
spect is partially shaded by extruded aluminium brise soleil
Fig. 1).

The building fabric U-value exceeded the statutory UK building
equirements of the time by an average of 29%. Internally the com-
lex architecture includes two large southerly and westerly voids,
wo internal atria facilitating displacement ventilation and a blend
f cellular and open plan offices over 8365 m2 of gross area (hous-
ng around 500 staff). Thermally induced displacement ventilation
nd exposed concrete surfaces are among two carbon reduction
hilosophies that guided the original design (Fig. 2).

A Gill’s MetPak Pro weather station combined with a SPN1 pyra-
ometer were mounted on the rooftop of this building (Appendix
) to provide the following outputs (accuracy noted in brackets):

 Global solar radiation (±5%).
 Diffused radiation (±5%).
 Wind speed (±2% at 12 m/s).
 Wind direction (±3◦).
 Air temperature (±0.1 ◦C).
 Relative humidity (± 0.8% at 23 ◦C).
 Dew point (±0.15 ◦C at 23 ◦C with a dew point of 20 ◦C).
 Barometric pressure (±0.5 hpa).

Except for solar radiation, all measurements are instanta-
eous values sampled at 10-minute intervals. Global and diffused
olar components are however 10 min  averages which are fur-
her rounded to form hourly figures to construct EPW (EnergyPlus
eather) files.

.2. HVAC services
Three equally sized condensing boilers provide a total heating
utput of 744 kW which are delivered to the zones via a com-
ination of radiators, trench and perimeter heaters, under floor
eating and tempered air. Two central air handling units (AHUs)
Category Case study building Best practice Typical

Electricity 137 128 226
Fossil Fuel 51 97 178

with 2-stage heat recovery facilitate displacement ventilation
at a total rate of 11.32 m3/s with 90% of the supplied volume
being recirculated. The design attempted to eradicate any need
for refrigerant-driven cooling yet a small degree of back-up
cooling capacity is provided first by adiabatic evaporative coils
acting directly on the summertime air intake, followed by direct
expansion vapour compression coils (which have a relatively small
capacity of 100 kW). Because of extensive IT use in the building,
power factor correction and surge suppression facilities are incor-
porated into electrical supply to guarantee a power factor quality
of 0.96 at all times. Lighting is operated by presence detection and
is equipped with daylight compensation sensors.

1.3. Energy data

Box whisker mean (BWM)  plots are used to present 2012
metered energy use of the building (Figs. 3 and 4). This allows quick
and efficient communication of many aspects of building energy
demand, namely peaks, medians, extreme values (outliers) and sea-
sonal variations [13]. The building has a rather consistent electricity
demand throughout the year (Fig. 3) where on average, working-
hour electrical loads float at around 180 kWh  (with peaks of around
200 kWh) before falling to a base-load of about 50 kWh  at night.

Night purge ventilation strategy raises the night time base-load
to around 60 kWh  in mid and late summer months. Daylight-
linked lighting conversely reduces the summer months’ electricity
demand during office hours.

The building annual heating demand is more variable given that
it is a function of climatic conditions. Except in January, loads above
100 kWh  fall above the upper quartile range indicating the build-
ing’s well-insulated fabric (Fig. 4). Building heating requirements
are well below CIBSE best practice recommendations (Table 1) [14].

1.4. Software description

EnergyPlus is a first principle based tool and the official building
simulation programme of the United States Department of Energy.
It is extensively used and examined by the international research
community to model heating, cooling, ventilation, lighting and also
water consumption using a state-space method (the thermal load
of the building is simulated using a heat balance method) [15,16].
Energyplus is primarily a simulation engine (with no interface) and
as such DesignBuilder version 3.2.0.067 was  used as the graphical
interface (front-ending EnergyPlus Version 7.2.0)[17]. Several for-
matting steps were required to allow weather files to be used in
EnergyPlus models, including generating ‘.stat’ files using Energy-
Plus weather statistics and conversions program.

2. Literature review

2.1. Modelling limitations

Building models capture an arbitrary and limited part of what

essentially is a multiplicity of dynamic (fabric properties and
HVAC), stochastic (occupant) and probabilistic (weather) elements,
resulting in both inaccuracy [18,19] and uncertainty [9,20]. Soft-
ware limitations, input parameter and weather data inaccuracy
compounded by difficulties in capturing how exactly a building
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Fig. 2. Section drawin

s operated are the major causes of virtual model errors [21]. The
ehaviour of heat in a space, and the ‘coupled’ sorption and desorp-
ion of moisture into and out of building fabric (and furniture) are
henomena of great dynamic complexity and quite understandably

nly partially described by building models [22] despite having
ignificant building energy implications [23]. Several computa-
ional methods exist that quantitatively evaluate heat and moisture
ransfer by solving the governing differential equations. These
re concisely captured in the introductory notes of Chen, Y. and

Fig. 3. BWM  plot of metered hourly e
e case study building.

S. Wang [24]. Limitations of hygrothermal modelling are due (but
not limited) to:

1 The properties of building material are assumed constant in most

analytical and numerical models proposed to solve heat and
moisture balance problems [25]. In reality the predominantly
porous and hygroscopic building fabric properties change with
changing temperature and moisture content, impacting heavily
on HVAC loads particularly in humid climates [22].

lectricity consumption (2012).
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Fig. 4. BWM  plot of metered

 The boundary conditions are difficult to define, and current
knowledge of climatic excitation of building hygrothermal
behaviour requires further refinement [26].

 The highly nonlinear governing equations are computationally
difficult, time-consuming [27] and prone to errors.

Natural ventilation and infiltration also heavily impact on
ygrothermal building properties [28]. Air flow related elements
re also among the most notable sources of uncertainty in building
imulation [29]. Overall these shortcomings in simultaneous mod-
lling of heat, air and moisture (HAM) form a catalogue of inquiries
hat are the subject of ongoing scientific work [30].

.2. Work on calibration

Until recently calibration efforts primarily focused on how
losely simulated results match the metered energy data
10,31,32], and also allowed for the personal judgement of the ana-
yst [33], although a pattern of common consensus is emerging
owards the application (and further refinement) of ASHRAE guide
4 method [9,34–37]. A comprehensive coverage of historical and
urrent calibration techniques and their merits is available from
oakley, D. et al. [34]. In most instances current guidelines that set
ut criteria on building calibration make allowances for calibrating
gainst actual data at either monthly or hourly intervals [10–12].
owever, calls have now been made to use hourly values of sub-
etered services over annual cycles to calibrate a model [9,38]. Cal-

bration work has mostly been performed manually [39] although a
ew methods have been proposed for the automation of the process
sing input parameter optimisation as well as uncertainty and sen-
itivity analysis [40]. Reddy identifies three calibration methods:
rst manual iterative, second automated and finally graphical and

tatistical methods [38]. Most efforts examined during this work
entred around the manual iterative method which also allows
rending the improvements made as a result of input adjustments.

ustafaraj, G., D. Marini, et al. [41] offer one of the most lucid
fforts that is an extension of previous works [35,38,42]. In its
ly gas consumption (2012).

comprehensive form this entails a two  stage version control param-
eter input (and screening) approach that begins by populating the
model with as-built fabric, HVAC and occupancy values. In the sec-
ond stage the model is further refined by identifying the most
influential input parameters and using field measurement data in
a reiterative process of adjustment to eventually establish the final
calibrated version. This method informs the work conducted here.

2.3. Accounting for uncertainty

When reconciling measured and simulated values, two  overall
sources of error exist. Measurement error contained in the actual
data and model error emanating from the simulation process. Mea-
surement errors can be identified with reference to equipment
manufacturer literature or by conducting equipment calibration.
Underpinning model errors are however more convoluted due to
the intrinsic uncertainties involved. Several examples exists that
attempt to capture source and magnitudes of uncertainty in build-
ing simulation modelling [43–46]. The essence of most of these
efforts are captured by De Wit  [47] who classifies the sources of
uncertainty into the following:

• Specification related: arising when the building fabric and sys-
tems are described partially or inaccurately.

• Modelling related: the virtual model governing principles are
fundamentally a simplified description of reality.

• Scenario related: external (e.g. climate) and internal (e.g. occu-
pant) parameters within the model are often different from
reality.

Inevitably the vast volume of information that is required to
describe a building model generally leads to simplification and

parameter reduction [48–51]. Despite this inevitability, recom-
mendations are made to attempt to identify the magnitude of
model uncertainties so that predictions of ECM studies could be
presented with greater levels of confidence [52–54]. Several meth-
ods had been provided to automatically calibrate a building model
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Table 2
Summary of parameter input.

Input parameters Value

Heating LTHW radiators + underfloor
heating

Heating setpoint/setback temperatures 22 ◦C (12 ◦C)
Ventilation Displacement with heat

recovery
Heating system seasonal CoP 0.8
Natural ventilation rate (per person) 8 l/s
Cooling setpoint/setback temperatures 24 ◦C (28 ◦C)
Lighting (daylight linked with linear

control)
9  W/m2 (to achieve 300 Lux)

Occupants (from head count) 490 (peak time)
Total office equipment gainsa,b 10 W/m2

Occupied hours 8 am–5 pm
Fabric U-values

Glazing (with low emissivity coating) 6 mm  double pane solar control
glazing with 20 mm air gap
(U-value 1.772 W/m2K)

Glazing G value (solar transmittance) 0.38
External walls (W/m2K) 0.292
Roof (W/m2K) 0.25
Floor (W/m2K) 0.13
Infiltration (ac/h)c 0.33

a Computers: 6 W/m2 (derived from agent-based power monitoring system
M. Royapoor, T. Roskilly / Ener

hile imposing certain constraints on relevant input parame-
ers; including (but not limited to) objective and penalty function
echniques [55,56], which can estimate critical parameters and
hen quantify the magnitude of uncertainty [52,54]. More recently
ayesian techniques were also proposed but these tend to be more
pplication-specific [57–59]. An increasing body of research has
ome to recognise that occupancy related issues act as a more
rominent source of uncertainty in model predictions than pre-
iously assumed, leading to efforts to develop mostly case-specific
tochastic models of occupancy [60–67].

. Method

The two-stage method [35,41] referred to in Section 1.2
nformed the calibration process undertaken for this study. A suc-
ession of 19 models each with incremental adjustments paved
he way to arrive at the final version containing local 2012 weather
les. Against actual hourly data, ASHRAE Guideline 14-2002 was

ollowed to calibrate the building model [10]. This entails deter-
ining two dimensionless indicators of errors, MBE  and CV(RMSE)

alues using formulae (1) and (2):

BE  =
∑Ni

i=1(Mi − Si)∑Ni
i=1Mi

(1)

V(RMSE) =

√∑Ni
i=1

[
[(Mi−Si)]

2

Ni

]
1
Ni

∑Ni
i=1Mi

(2)

Where Mi and Si are respective measured and simulated data
t instance i, and Ni is the count of the number of values used in
he calculation. ASHRAE Guide 14 considers a building model cali-
rated if hourly MBE  values fall within ±10% and hourly CV(RMSE)
alues fall below 30%. MBE  and CV(RMSE) indices were constructed
ver monthly intervals in order to study monthly variations too.
BE  figures provide an indication of errors averaged to the mean of
easured values but suffer from the cancellation effect. CV(RMSE)

ndex however is a measure of accumulated error normalised to
he mean of the measured values. As such CV(RMSE) more closely
eflects the accumulated magnitude of error and therefore is a bet-
er measure of the overall prediction accuracy of the model.

Conventionally when simulating complex phenomena, error is
efined as reference value (observed) subtracted from the model
orecast (simulated) [68]. Error values were constructed for the
hree streams of data under analysis using equation (3):

i = Mi − Si (3)

.1. Parameter input and calibration

Prior to the handover of the building, a complete building
og-book was compiled by the architectural firm which outlines
etailed descriptions of as-built fabric properties, electrical and
VAC service distribution and control strategies. This enabled a
omplete description of the building (summarised in Table 2). The
state facilities managements and building users were also con-
ulted for operational details.

The results of an infiltration smoke test (carried out at 50 Pa)
rovided the infiltration input. A point particularly noteworthy is
he conversion of measured building’s air change rates (expressed

t 50 Pa) to normalised air leakage at atmospheric pressure. This
as achieved using formula (4):

CHAtmospheric ≈ ACH50

F
(4)
deployed by the university IT department).
b Office equipment: 4 W/m2 (derived from 12 electricity sub-meters at the build-

ing).
c Constant rate of infiltration expressed at atmospheric pressure.

Where F is a factor used to relate the air exchange rates under
typical conditions (ACHatmospheric) to the air exchange rate at 50
Pascal (ACH50) [69]. An average F-value of 20 was  used as given by
Sherman, M.  [70].

3.2. Room sensors

As part of this project a first generation prototype wireless sen-
sor units were developed and a set of two  of these sensors were
positioned 1.5 m above floor level and away from direct sunlight
rays within the 2nd floor open plan office (Appendix B). Prior
to deployment the sensors were calibrated within a variety of
locations with both stable and changing thermal conditions. Mea-
surement results of the two units were within ±0.3 ◦C of each other
and within ±0.5 ◦C of a TESTO 435 audit device. The response time
of the two  individual sensors were also below 1 min  (Appendix
C) which is adequate for measuring highly damped building zone
temperatures. The readings from the two sensors were averaged
to construct the actual zone air temperature of the target space
(Fig. 11).

4. Results

4.1. Electricity

Statistically, electrical power measurement is a continuous
quantitative data type. Fig. 5 enables a quick visual inspection of
measured and simulated values and their statistical variations by
arranging paired data points in ascending order.

The building’s 2012 annual electricity consumption is
910,926 kWh. The final calibrated model produced a sum of
901,059 kWh  (i.e. a deviation of 1.08%). Electricity carries the
biggest CV(RMSE) in among the other two  calibrated streams

of data since electrical consumption is more closely related to
occupant activity that deviates (in a random manner) from the
deterministic occupancy templates used in Energyplus model.
Hourly MRE  and CV(RMSE) indices for individual months show
that December carries the biggest monthly accumulation of errors
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Table 3
Sub-categorised CV(RMSE) and MBE  values (monthly data).

Category BE*

(monthly)
V (RMSE)**

(monthly)
V (RMSE)***

(hourly)

HVAC 4.69 13.1 –
Lighting −2.62 9.1 –
Small power −1.6 6.3
Fig. 5. Hourly-based measured and simulated buil

Fig. 6). The facilities manager in the target building also takes a
ery proactive role and the set points within the space are regularly
pdated in response to occupant’s comments. This adds a greater
robabilistic pattern to actual building performance as opposed
o the static and template-driven nature of simulation results.
ighting, small power and HVAC plant electrical consumption are

ub-metered but available on monthly intervals only and the final
odel MBE  and CV(RMSE) values for monthly data were within
SHRAE recommended monthly values (Table 3).

HVAC energy consumption carries the biggest error in the three
ategories for which monthly sub-metered values were available.

Overall electricity consumption 0.50 9.7 9.9

* Acceptance limit: −5% ≤ MBE  (monthly) ≤+5%.
** Acceptance limit: CV (RMSE) (monthly) ≤+15%.

*** Acceptance limit: CV (RMSE) (hourly) ≤+30%.

0.9%

9.9%

-10 %

-5%

0%

5%

10%

15%

20%

25%

MBE CV(RM SE)  

Fig. 6. MBE  and CV(RMSE) analysis for building electrical consumption (hourly data).
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Fig. 7. Histogram of hourly electricity residuals (kWh).

ighting and small power were both slightly over-predicted by the
odel whereas HVAC was under-predicted. Note that consistent
anufacturer seasonal efficiencies for HVAC plants were used and

o adjustments were made to achieve closer results.
Quite clearly EnergyPlus electricity prediction surpasses the

alibration criteria set by the ASHREA guide 14. However the
ancelling effect of MBE  values are evident given that for
nstance the overall MBE figure of 0.9% is much smaller than
hourly
V(RMSE)houlry value of 9.9 (Fig. 6).

The histogram of hourly residuals provides a quantified illus-
ration of the magnitude and spread of model electrical errors
Fig. 7). Hourly electrical errors (or residuals) form a bi-modal

Fig. 8. Hourly-based measured and simulated buildin
 Buildings 94 (2015) 109–120 115

chart with overall characteristic of normal distribution centring
on zero. Expressed in relative terms, 94% of errors have a mag-
nitude falling within ±10% of daily peak electricity consumption
(i.e. ±20 kW). The extreme incidents of negative errors (i.e. model
over-predicting) have a similar magnitude to positive errors and
the frequency of both instances are low (only 1.1% of errors are
larger than ±30 kWh).

4.2. Gas

Space heating in the case study building only occurs when the
average daily outdoor temperature is below 11.5 ◦C, confirming the
well-insulated nature of the building fabric. The heating system
(for the year under examination) was  also entirely shut down from
mid-June to early October. The paired instances of measured and
simulated gas consumption, again another continuous quantitative
data type, are arranged in ascending order in Fig. 8.

A building’s heating-related gas consumption is a direct function
of outdoor temperatures. As the weather data used in the simula-
tion process was generated using the building’s rooftop weather
station, the simulated and measured data predictably bear a very
close resemblance. A Pearson correlation figure of 99.7% indicates
that measured and simulated gas consumption values vary closely
in magnitude and direction. The measured energy consumption in
Fig. 8 has a stepped pattern due to the fact that the three boil-
ers serving the building cannot modulate infinitely, so there is
similar heat demand. The simulated values however result from
mathematical load calculation, which would by definition have an
infinitely variable nature. Fig. 9 outlines the MBE  and CV(RMSE) cal-
ibration results. As well as monthly and annual values, the overall

g gas consumption in ascending order (kWh).
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operation therefore introduces a larger element of error in model
Fig. 9. MBE  and CV(RMSE) analysis fo

esults are calculated discounting the summer months to demon-
trate the moderating effect that 3 months of no heating load (i.e.
ero gas prediction errors) can have on the overall result. The largest
rrors belong to October season when the building was  also used
t the weekends for organisational purposes.

The MBE  and CV(RMSE) values fall within the respective ASHREA
cceptance limits of within ± 10% and below + 30%. Equally 91.1%
f the residual values fall within ±10kWh (Fig. 10). The simulated
odel displays a slight tendency to over-predict gas consumption

hence greater incidents of negative residuals). The frequency of
oth over and under predicted values are however insignificant.
ote that the large incidents of values binned at the bar centring
n zero (Fig. 10) is due to three months of no loads (hence residual
alue of zero) as well as incidents of no boiler operation during
eating season.

.3. Space temperature

Actual recorded air temperature over a full annual cycle were
sed to examine the ability of EnergyPlus model to accurately pre-
ict zone temperature. This also acts as a stage 2 calibration. Fig. 11

llows a quick visual comparison of the BWM  plots of annual hourly
pace air temperatures for both measured and simulated data sets.
ig. 12 outlines the MBE  and CV(RMSE) error checks of tempera-
ure results. It was noted earlier that MBE  and CV(RMSE) indices
re statistical gauges of normalised ‘relative’ and normalised
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Fig. 10. Histogram of hourly gas residuals (kWh).
ding gas consumption (hourly data).

‘accumulated’ errors and as such they can offer insights into
deviations of EnergyPlus space temperature prediction from corre-
sponding actual values. 99.5% of the errors (as defined by formula
3) fall within ±1.5 ◦C and 93.2% are within ±1 ◦C. Overall actual
space temperatures are warmer by an average of 0.47 ◦C over the
full annual cycle, and this is evident by the greater instances of
positive errors on Figs. 13 and 14. The histogram in Fig. 13 has
a bimodal spread with its centre at around 0.25 ◦C, indicating
that the EnergyPlus model in this case study tends to marginally
under-predict the temperature in the space. Errors however have
an equal distribution on both sides of the peak. The scatterplot on
Fig. 14 shows a constant spread of errors with increasing simulated
temperatures, which demonstrates that Energyplus model main-
tains a constant level of accuracy across the full range of predicted
temperatures.

The summer period (with the heating system idle) observes a
small reduction in the magnitude of MBE  and CV(RMSE) values
(Fig. 12). Conversely all winter months have slightly larger error
magnitudes. This trend suggests a more accurate temperature pre-
diction by the model in the absence of heating system input (When
AHUs are only delivering displacement ventilation). HVAC heating
temperature predictions in this study. Recall from sub-metered
electrical calibration results that HVAC category had the largest
magnitude of error (Table 3).
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Fig. 11. Hourly-based BWM  plots of measured vs. simulated space temperature.



M. Royapoor, T. Roskilly / Energy and Buildings 94 (2015) 109–120 117

0.74%

1.96%

-5%

-3%

-1%

1%

3%

5%

MBE CV(RMSE)

No hea �ng  plant oper a�on

Fig. 12. MBE  and CV(RMSE) analysis of 

2.01.51.00.50.0-0.5-1.0-1.5-2.0

600

500

400

300

200

100

0

Residual Value (°C)

Fr
e

q
u

e
n

cy

Fig. 13. Histogram of hourly temperature residuals.

5

i
r
c
w
o
s
p
o
c
i

◦

Fig. 14. Hourly-based scatterplot of residual versus simulated values (◦C).

. Discussions

Given the diverse and varied nature of underlying uncertainties
n simulation attempts, building performance results can at best
est within a small allowable error margin. In the first stage of the
alibration, a detailed EnergyPlus building model containing local
eather data achieved respective hourly MBE  and CV(RMSE) values

f ±5% and below +10% for gas and electricity load prediction. In the

econd stage the calibrated model demonstrated air temperature
rediction accuracies of ±1.5 ◦C for nearly 99.5% and an accuracy
f ±1 ◦C for nearly 93.2% of hourly instances over the full annual
ycle. MBE  and CV(RMSE) values each provide a different set of
nsights. MBE  values have the drawback of cancellation and hence
office temperature (hourly data).

might under-report the magnitude of seasonal errors, as observed
for instance in electrical calibration where the overall MBE  value of
0.9 concealed much larger monthly MBE  errors (Fig. 6). Therefore, if
the analyst seeks to highlight instance of under or over prediction,
monthly intervals of MBE  index can prove more instrumental. This
therefore allows the analyst the opportunity to account for sea-
sonal variations and reasons behind them. In contrast CV(RMSE)
values provide a better indication if a single index demonstrating
the ‘accumulated magnitude’ of error is sought. Within this work
the HVAC energy consumption carried the largest error and was
the greatest source of uncertainty in the model energy prediction,
affecting mostly the simulated electricity value. In contrast model
gas consumption prediction (being a direct function of weather
data) achieved greater levels of accuracy. Interestingly actual gas
consumption was smaller than simulated (Fig. 8), yet the actual
HVAC electricity consumption was  bigger than simulated (from
Table 3, Electricity MBEMothly value for HVAC consumption has a
positive magnitude of 4.69 which points to larger actual HVAC
electricity consumption). Since less gas consumption should lead
to smaller heating related pumping duties (hence smaller HVAC
electricity), this discrepancy could arise form:

1 The two large AHUs and the cold water booster pump sets.
2 Natural ventilation and infiltration values which could lead to

larger summer-time cooling load. Air flows in buildings continue
to remain very difficult to measure and quantify despite their
significant energy and comfort implications.

Deriving more definite conclusions in the absence of sub-
metered water and hourly AHU figures would however not carry
much scientific rigor. Another notable point is that in order to
account for the measurement error within this calibration exer-
cise, authors have made the assumption that the gas and electricity
meter’s accuracy within target building complies with SI 684 (1983)
and IEC 62053 respectively as extensive attempts to obtain meter
compound error margins from manufacturers failed to produce
any results. These guidelines allow +2.5% or −3.5% of compound
instantaneous deviations.

Overall Energyplus engine provided a very accurate evalua-
tion of building energy and environmental performance whereby
annual simulated electricity load was under-predicted by only
1.08%, that of gas was over-predicted by 3.8% and annual tem-

perature within the space was under-predicted by 0.47 C. It is
hoped that this attempt can offer insight to further refinement of
the calibration process where currently clarifications are particu-
larly needed for instances when measured data is limited or of a
coarse nature. It could be argued that the bulk of existing building
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tock in the UK, EU and beyond have very limited data on details
f design and construction. At the same time such buildings fre-
uently happen to be the most suitable vehicles for ECM and
enewable integration studies. Therefore further development of
alibration protocols should seek not to penalise buildings with
imited primary data, and stricter calibration acceptance criteria
hould only inform leading scientific work. A tiered method for
nstance could be developed to accommodate progressing levels of

odel accuracy and primary data granularity.

. Conclusion

Simulation remains an indispensable tool for performance anal-
sis of buildings both pre and post construction [71]. Insights
ffered by mathematical building models also remain statisti-
ally much more significant than model error margins so long as
ttempts are made to account for the source and magnitude of
rrors. Pervasive sensing technologies and digitally logged sub-
etered information offer the re-focusing the post occupancy

tudies to the exploitation of actual values that within a calibrated
odel can facilitate ECM and optimisation studies with increas-

ng accuracy. The following summarises the main findings of this
ork that offers a set of recommendation if further development

f ASHRAE method of building energy model calibration was to be
ndertaken:

 Where possible calibration should be conducted over an annual
cycle using hourly energy data. Where impractical; hourly pri-
mary data could be collected for shorter cycles (weekly or
monthly) to ‘validate’ simulation results.

 Local weather files should be obtained and used for a model to
be considered calibrated. Any other weather file type may  assist
a virtual model to be validated.

 MBE  and CV(RMSE) calibration results (as those inferred by
ASHRAE Guide 14) when presented in monthly intervals will
allow an assessment of seasonal variations.

 Residual histograms or scatterplots can also shed further light on
the tendency of the model to under/over predict across the full
range of simulated values.

 The levels of tolerated error of a model should be dictated by
the function of the virtual model and primary data availability.

There is scope for further work to define the required levels of
model accuracy for efforts such as optimisation and control stud-
ies, ECM and technology appraisals, renewable integration, etc.
To that end, further refinement of calibration guidelines should
first reflect the model purpose.

Fig. B1. Thermal sensors within th
Fig. A1. Case study building’s rooftop weather station (inset left: two  main dash-
board desktop interfaces providing live readings).

In their concluding remarks, Raftery, P et al. recommend nar-
rowing ASHREA acceptance criteria hourly MBE  and CV(RMSE)
values to ±5% and ≤ + 20% respectively [72]. As demonstrated
within this work, models calibrated to these limits can more confi-
dently predict actual prevailing temperatures within the building.
The findings of this paper supports this proposition particularly
for scientific work conducted using actual hourly data over annual
cycles. This would ensure greater confidence in the accuracy of
model based studies and brings about a unified approach to model
calibration. The existing MBE  and CV(RMSE) values of ±10% and
±30% can still be adhered to when complete annual hourly data is
not available to the analyst and such a model can be considered
‘validated’.

In a follow-up paper the calibrated model is used to examine the
potentials of adaptive comfort as defined by EN 15251 2007 in the
target office building within current and passive house envelope.

Acknowledgements

The authors would like to thank Engineering and Physical Sci-

ences Research Council (EPSRC) for their financial support which
enabled the undertaking of this research work (EPSRC grant refer-
ence EP/I000755/1).

e 2nd floor open plan office.



M. Royapoor, T. Roskilly / Energy and

10

15

20

25

30

35

40

0 10 20 30 40 50 60 0 10 20 30 40 50 60

°C

Time (sec)

Sensor 1

Sensor 2

Fig. C1. Sensor response time curves over full room temperature ranges.

0

5

10

15

20

25

30

35

Ca
lib

ra
to

r
[T

ES
TO

 4
35

 ]
(°

C)

Sensor 1

Sensor 2

A

A

A

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

3 10 20 30
Calibrat ed se nso r (°C)

Fig. C2. Accuracy graph produced against TESTO 435 measurements.

ppendix A. Weather station

Fig. A1

ppendix B. Sensor positions

Fig. B1

ppendix C. Sensor calibration results

Figs. C1 and C2.

eferences

[1] International Building Performance Simulation Association, History of Build-
ing Energy Modeling, 2014 [cited 14.7.2014]; Available from: http://www.
bembook.ibpsa.us/index.php?title=History of Building Energy Modeling

[2] E. Mills, Inter-comparison of North American residential energy analysis tools,
Energy Build. 36 (9) (2004) 865–880.

[3] L.G. Swan, V.I. Ugursal, Modeling of end-use energy consumption in the resi-
dential sector: a review of modeling techniques, Renew. Sust Energ. Rev. 13 (8)
(2009) 1819–1835.

[4] International Building Performance Simulation Association, History of Build-
ing Energy Modeling, 2014 [cited 12.6.2014] Available from: http://www.
bembook.ibpsa.us/index.php?title=History of Building Energy Modeling
#1990s: The Rise of the PC

[5] J. Hu, P. Karava, A state-space modeling approach and multi-level optimiza-
tion algorithm for predictive control of multi-zone buildings with mixed-mode
cooling, Build. Environ. 80 (2014) 259–273.

[6] G.D. Kontes, et al., B.E.M.S. Intelligent, design using detailed thermal simulation
models and surrogate-based stochastic optimization, J Process Control 24 (6)
(2014) 846–855.

[7] Z. Wang, et al., Multi-agent control system with information fusion based com-
fort model for smart buildings, Appl. Energy 99 (2012) 247–254.

[8] D. Loshin, Chapter 7 – Big Data Tools and Techniques, in: D. Loshin (Ed.), Big
Data Analytics, Morgan Kaufmann, Boston, 2013, pp. 61–72.

[9] P. Raftery, M.  Keane, J. O’Donnell, Calibrating whole building energy models:

an  evidence-based methodology, Energy Build. 43 (9) (2011) 2356–2364.

10] ASHRAE, Guideline 14-2002: Measurement of Energy and Demand Savings,
ASHRAE, Atlanta, Georgia, 2002.

11] US Department of Energy, M&V  Guidelines: Measurement: Verification
for Federal Energy Projects, 2008, Version 3.0. p. http://mnv.lbl.gov/
keyMnVDocs/femp

[

[

[

 Buildings 94 (2015) 109–120 119

12] Efficiency Valuation Organization, International Performance Measurement
and Verification Protocol, Efficiency Valuation Organization, Washington, DC
20006, 2007.

13] J.S. Harbel, M.  Abbas, Development of graphical indices for viewing building
energy data: Part 1, J. Sol. Energy Eng. 120 (1998) 156–161.

14] CIBSE, Guide F; Energy Efficiency in Buildings, The Chartered Institution of
Building Services Engineers, London, 2012.

15] N. Fumo, P. Mago, R. Luck, Methodology to estimate building energy con-
sumption using EnergyPlus benchmark models, Energy Build. 42 (12) (2010)
2331–2337.

16] Pang X. et al., Real-time building energy simulation using energyplus and the
building controls virtual test bed, 2011.

17] Design Builder, Version 3.2 2014 [cited 12.6.2014]; Available from:
http://www.designbuilder.co.uk/, 2014.

18] F. Karlsson, P. Rohdin, M.L. Persson, Measured and predicted energy demand
of  a low energy building: important aspects when using building energy sim-
ulation, Build. Serv. Eng. Res. Technol. 28 (3) (2007) 223–235.

19] C. Turner, M. Frankel, Energy Performance of LEED for New Construction Build-
ings, New Buildings Institute, Washington, DC, 2008.

20] W.L. Carroll, R.J. Hitchcock, Tuning simulated building descriptions to match
actual utility data: methods and implementation, ASHRAE Trans. 99 (1993)
928–934.

21] L. Wang, P. Mathew, X. Pang, Uncertainties in energy consumption introduced
by building operations and weather for a medium-size office building, Energy
Build. 53 (2012) 152–158.

22] M.  Qin, et al., Simulation of coupled heat and moisture transfer in air-
conditioned buildings, Autom. Constr. 18 (5) (2009) 624–631.

23] Y. Wang, et al., Effect of the night ventilation rate on the indoor environment
and  air-conditioning load while considering wall inner surface moisture trans-
fer, Energy Build. 80 (2014) 366–374.

24] Y. Chen, S. Wang, Transfer function model and frequency domain validation
of  moisture sorption in air-conditioned buildings, Build Environ. 36 (5) (2001)
579–588.

25] C.-E. Hagentoft, Introduction to building physics, Bauphysik 23 (5) (2001) 315.
26] H. Janssen, B. Blocken, J. Carmeliet, Conservative modelling of the moisture and

heat transfer in building components under atmospheric excitation, Int. J. Heat
Mass Trans. 50 (5–6) (2007) 1128–1140.

27] X. Lü, Modelling of heat and moisture transfer in buildings: I model program,
Energy Build. 34 (10) (2002) 1033–1043.
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