
Agile Instructional Design

1

Running head: AGILE INSTRUCTIONAL DESIGN

Agile Methods of Software Engineering should Continue to have an Influence

over Instructional Design Methodologies.

Peter Rawsthorne

Cape Breton University & Memorial University of Newfoundland

Partial fulfillment of the requirements for EDU533

Dr. David Lloyd

Saturday, December 10, 2005

Agile Instructional Design

2
Index

The problem domain ... 4
Agile Methodologies .. 4
Traditional Instructional Design Methodologies ... 5

ADDIE.. 6
Dick & Carey.. 6

Software Engineering Influence .. 8
Microsoft Solution Framework ... 8
Rapid Prototyping .. 8
Agile... 9

Thoughts on Learning Theory ... 9
Agile Instructional Design .. 10

Envision ... 10
Plan ... 10
Build... 11
Stabilize ... 11
Deploy ... 11

Conclusion .. 12
References .. 13
Appendix A, AID Flowchart ... 14

Agile Instructional Design

3
Abstract

Since the 1960’s computer technologies and related practices and methods have had a significant

influence over Instructional Design methods. One of the major trends is the influence of

Software Development Life Cycle methodologies over Instructional Design methodologies. This

influence is evident in the ADDIE, Dick and Carey, Rapid Prototyping and other Instructional

Design methodologies. The discipline of software engineering is going through another

methodology paradigm shift; this shift is known as Agile. The Agile methods and practices have

much to offer in building upon the existing set of Instructional Design methodologies.

Agile Instructional Design

4
The problem domain

The influence of software engineering methodologies and practices over Instructional Systems

Design (ISD) has been ongoing since Computer Based Training (CBT) has been available.

During the last forty years new software engineering methodologies have become available. The

methodologies that have stayed continue to have an influence over ISD. As defined by Pressman

(1997) these methodologies include; Linear Sequential Model (waterfall), Prototyping, Rapid

Application Development and the Evolutionary models. All of these models have, with varying

degrees of success, worked within ISD. As Douglas (2001) claims, there is also a growing

discontent among many practitioners with the ISD methodology. Douglas (2001) continues in

saying that traditional ISD has been criticized for being too slow, not necessary, leading to bad

solutions and having an outdated world-view. There is also an absence of an alternative to assist

in remedying this lack of a strong new design process for ID. Tozman (2004) states that what

seemed missing, however, were a discussion about the options or limitations technology provides

to the design process. As an answer to these criticisms comes the next iteration of software

development methodologies known as the Agile methodologies.

Agile Methodologies
The agile methodologies are pragmatic and focused upon implementing software that meets the

customers needs, no more, no less. A lot of what is within the traditional software engineering

methodologies is discarded within the Agile methodologies. This new approach is well

described within one of the most popular Agile methodologies, Extreme Programming (2001);

Architecture is shared and not held by an individual, the customer has direct contact with the

programmers not via an analyst, the documentation is minimized and not ritualized, software unit

Agile Instructional Design

5
tests are predefined and implemented before software development begins, programmers do not

work alone but in pairs, teams are multidisciplinary, software is never considered finished and is

always being refactored. It should be considered that the Agile methodologies have grown out

of, the need for shortened development cycles; the acknowledgement that software is never

finished; that development teams change through time; that technical documentation is rarely

read; and that customer requirements change as the project progresses. The philosophy of Agile

(2001) is best described by its manifesto;

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

Traditional Instructional Design Methodologies

Instructional Design (ID) methodologies have in general been based upon the typical software

engineering methodologies. Kennedy (1998) states that these models are representative of

common approaches to software engineering…. The models have been selected because the

expertise and funding to implement them are generally available in higher education. Two of the

most popular of these software engineering based ID methodologies are ADDIE and Dick &

Agile Instructional Design

6
Carey. The linear nature of these two methodologies is best described with a high level review of

each followed by a brief summary of how Agile methods could improve these two

methodologies. It should be noted that both these methodologies suffer the restraints of their

linear roots. As described by Nichani (2002), many reasons are attributed to this prevalent

condition—from time and budget constraints to limitations of traditional instructional design. We

feel another important reason is the lack of exposure to alternative practices.

ADDIE
As described by Tozman (2004) the term ADDIE is an acronym for Analysis, Design,

Development, Implementation, and Evaluation. In ADDIE, the completion of one step is

logically fed into the one immediately after it. The ADDIE methodology is very linear and as

Kennedy (1998) states, the most problematic in an educational environment. As an improvement

upon ADDIE I would suggest the philosophical foundation of the methodology be completely

reviewed and replaced by an equivalent Agile type manifesto. From this new foundation new

methods and practices would be built to better suit the current restraints within the instructional

design environment. Consider time, budget, changing learning theories, increased use of

constructivist methods, availability of subject matter experts, changing ID development staff,

rapidly changing technology and media channels as the restraints.

Dick & Carey
The Dick and Carey methodology has been very popular due to its continuous improvement with

the authors focus on keeping it up to date. With all of the positive effort with this methodology it

still “suffers” from its linear roots. The steps of the Dick and Carey methodology are well

described by Lee (n.d.);

Agile Instructional Design

7
Stage 1. Instructional Goals

Stage 2. Instructional Analysis

Stage 3. Entry Behaviors and Learner Characteristics

Stage 4. Performance Objectives

Stage 5. Criterion-Referenced Test Items

Stage 6. Instructional Strategy

Stage 7. Instructional Materials

Stage 8. Formative Evaluation

Stage 9. Summative Evaluation

The linear nature of the Dick and Carey methodology is very apparent when the stages are read

together. One stage leads to another. Tozman (2004) describes that no one has ever challenged

the philosophy that underpins the methodology or disputed the validity of how the methodology

supports that philosophy. Agile methodologies are challenging typical software engineering

methodologies and therefore they also should be challenging traditional ID methodologies. For

Agile to effect positive change upon the Dick and Carey model I offer the following changes;

Stage 1. Curriculum Planning

Stage 2. Identify Learning Themes and Metaphors (Anchors)

Stage 3. Identify Learner Roles

Stage 4. Trawl for Learning Objectives, Modules and Competencies.

Stage 5. Identify Test Cases (Proof of Competencies)

Stage 6 & 7. Pair Programming (Development)

Stage 8. Unit Test (Automated Testing)

Stage 9. Release to Production (Refactor, Refactor, Refactor)

Iterate to Stage 4. within curriculum plan.

Agile Instructional Design

8
Needless to say this offering requires much greater detail and defense. This should be the subject

for further research. Take this offering as evidence of the ease and appropriateness that Agile

methods can have upon the Dick and Carey methodology.

Software Engineering Influence
A number of significant trends in software engineering have had an influence upon me to believe

that Agile is the new methodological foundation required for ID. These initiatives or trends

come both from private companies and the public domain. The combination of these trends with

Agile create what I consider to be a strong new ID methodology.

Microsoft Solution Framework
The Microsoft Solutions Framework (MSF) exists here for it provides an excellent framework

for developing a complete and pragmatic environment to ensure software success. The

framework identifies five stages, they include; Envision, Plan, Build, Stabilize and Deploy. This

framework also uses a vocabulary which is forward looking and therefore better prepared to

address emerging technologies and learning theories. As an example, MSF uses Envision to

start, where ADDIE uses Analyze. In a domain that is highly influenced by technology, which

ID is, to envision what is needed in the future is a stronger start position than to analyze what has

been or is in the present. Having a vocabulary to support a forward looking approach will

strengthen the methodology.

Rapid Prototyping
Rapid Prototyping exists as an influence for it introduced the idea of programmers working

directly with the end customer (in the case of ID, the learner). This is a very powerful concept

which Agile has taken much farther. The roots of Agile are in Rapid Prototyping. By building

Agile Instructional Design

9
upon rapid prototyping and the Agile practice of pair programming, teams of multi-disciplinary

ID developers with rich media, database, SCORM, Web, and other necessary skills would be

brought together with instructional designers to develop the next generation of “courseware”.

Agile
Agile is the new way to build software. It is pragmatic and best described by Fowler (2003);

• Agile methods are adaptive rather than predictive. Engineering methods tend to try to plan

out a large part of the software process in great detail for a long span of time, this works well

until things change. So their nature is to resist change. The agile methods, however, welcome

change. They try to be processes that adapt and thrive on change, even to the point of

changing themselves.

• Agile methods are people-oriented rather than process-oriented. The goal of engineering

methods is to define a process that will work well whoever happens to be using it. Agile

methods assert that no process will ever make up the skill of the development team, so the

role of a process is to support the development team in their work.

The combination of MSF, Rapid Prototyping and Agile create a new foundation for ID

development.

Thoughts on Learning Theory
For an Agile approach to ID to work it must also be aligned with current and emerging learning

theory. Starting with Spiro’s (1995) work on Cognitive Flexibility through to the continued

deepening of constructivist learning theories, there is a blending of Agile into ID already

underway. This blending of constructivism with Agile is directly spoken two by Kennedy

(1998), Douglas (2001) and indirectly spoken to by Nichani (2002) and Tozman (2004). Agile

Agile Instructional Design

10
methods not only support current and emerging learning theories, they enhance constructivism

by involving the learner in the curriculum development process.

Agile Instructional Design

The strength of Agile Instructional Design (AID) will

come from the early involvement of multidisciplinary

teams; the ability of later stage tasks to change previous

stage outcomes; the involvement of well defined learner

roles; and the ongoing inclusion of emerging technologies

and rich media. See Appendix A for a larger sized AID

flowchart.

Envision
A curriculum planning meeting is used to envision the

current and future curriculum which proposes the overall

curriculum modules. Learner roles and context are

identified and themes identified to connect learning

modules to the curriculum. The curriculum plan is then

used to create iteration plans for each individual learning

module.

Plan
Planning within Agile Instructional Design is more of a

development effort that a planning effort. A

pilot

iterate

ENVISION

PLAN

BUILD

STABILIZE

DEPLOY

Identify anchor
subject

Identify learning
Themes

Curriculum Planning

Identify Learner
Roles

Identify
interdisciplinary

opportunities and
requirements

MATHEMATICS

LANGUAGE ARTS

SOCIAL STUDIES

OTHER

Examine Timeline,
Instructional

Strategies and
Research

DIRECT

CONSTRUCTIVE

COGNITIVE

Identify learning
objectives and

modules

Create
learning
modules

Create
assessment and

automated testing
tools

Create / Modify
content

Launch

Project Assessment
Evaluate Curriculum

Outcomes

Quality Assurance

fix

Release

refactor

Re-assess
curriculum

Integration with
LMS / CMS

Figure 1: AID Flowchart

Agile Instructional Design

11
multidisciplinary team of software developers, instructional designers, subject experts, rich

media designers and learners further define the content of learning modules based upon the

identified themes, learner roles, learning theories and interdisciplinary opportunities. Schedules,

strategies, an inventory of learning objectives and research requirements are all outcomes of the

planning stage.

Build
Building the learning modules is a twofold effort executed by multidisciplinary developer pairs.

The twofold effort balances the actual building of the modules with the unit testing of the

executable software and the assessment of the learning objectives covered by the module. The

pairs combined instructional design and software development skills and knowledge provide a

comprehensive ability to build solid instructional modules. As soon as possible in the build

process learners are brought in to pilot and evaluate, and potentially improve, the modules.

Stabilize
Stabilization occurs once individual modules are completed and released to Quality Assurance

(QA). The process of QA can send modules back to the developer pair for bug fixing.

Stabilization also integrates the learning modules with the Course and / or Learning Management

Systems. Once stabilization has been complete the modules are deployed to production for

learner use. This deployment step also signifies that modules can be refactored, or improved, and

also become a part of the curriculum “ecosystem” for use throughout the learning environment.

Deploy
Deployment is the act of putting the learning modules into production for general release. This

separation of the deployment activity from all others ensures the quality of the overall release.

Agile Instructional Design

12
The production environment will have its idiosyncrasies which the development team will not be

aware. The owners of the production environment (System Administrators) are best suited to

manage the deployment.

Conclusion
The Agile software engineering methodologies provide both the philosophical and practical

foundation for the next iteration of Instructional Design methodologies. The current set of linear

based ID methodologies, though effective, is beginning to show signs of becoming obsolete. The

next iteration of ID requires lower costs, faster implementation of new technologies and media

sources, less ritual and greater learner involvement. An Agile Instructional Design (AID)

methodology would meet the needs of this next iteration along with applying current learning

theory more effectively.

Agile Instructional Design

13
References

Agile Alliance (2001). Manifesto for Agile Software Development. Retrieved on Nov. 1, 2005
from http://www.agilemanifesto.org/

Extreme Programming. Retrieved on Nov. 20, 2005 from http://www.extremeprogramming.org

Fowler, Martin (2003). The New Methodology. Retrieved on Nov. 28, 2005 from

http://www.martinfowler.com/articles/newMethodology.html

Gillard, G., Leslie, P. & Rawsthorne P. (2005). An Instructional Design Methodology to

Encourage Student Involvement in Course Design and Implementation. Retrieved on
Nov. 20, 2005 from http://www.rawsthorne.org/bit/medit/ed533/docs/epbsde-v2.pdf

Kennedy, David (1998). Software Development Teams in Higher Education: An Educators View.

Retrieved on Nov. 13, 2005 from
http://www.ascilite.org.au/conferences/wollongong98/asc98-pdf/kennedyd.pdf

Lee, Hee-Sun (n.d.). Dick and Carey Model. Retrieved on Nov. 17, 2005 from

http://www.umich.edu/%7Eed626/Dick_Carey/dc.html

Microsoft Corporation. Microsoft Solutions Framework, (n.d.). Retrieved on Oct. 29, 2005

from http://www.microsoft.com/technet/itsolutions/msf/default.mspx

Nichani, Maish (2002). Empathic Instructional Design. Retrieved on Nov. 22, 2005 from

http://www.elearningpost.com/features/archives/001003.asp

Pressman, Roger (1997). Software Engineering: A practitioner’s approach (Forth ed.) New

York: McGraw-Hill Companies Inc.

Qureshi, Elena (2004). Instructional Design Models. (n.d.) Retrieved on November 19, 2005

from http://venus.uwindsor.ca/courses/edfac/morton/instructional_design.htm

Spiro, Rand. (1995). Cognitive Flexibility, Constructivism, and Hypertext: Random Access

Instruction for Advanced Knowledge Acquisition in Ill-Structured Domains. Retrieved on
Nov. 4, 2005 from http://phoenix.sce.fct.unl.pt/simposio/Rand_Spiro.htm

Tozman, Reuben (2004). Another New Paradigm for Instructional Design. Retrieved on

November 12, 2005 from http://www.learningcircuits.org/2004/nov2004/tozman.htm

Agile Instructional Design

14
Appendix A, AID Flowchart

pilot

iterate

ENVISION

PLAN

BUILD

STABILIZE

DEPLOY

Identify anchor
subject

Identify Learning
Themes

Curriculum Planning

Identify Learner
Roles

Identify
interdisciplinary

opportunities and
requirements

MATHEMATICS

LANGUAGE ARTS

SOCIAL STUDIES

OTHER

Examine Timeline,
Instructional

Strategies and
Research

DIRECT

CONSTRUCTIVE

COGNITIVE

Identify learning
objectives and

modules

Create
learning
modules

Create
assessment and

automated testing
tools

Create / Modify
content

Launch

Project Assessment
Evaluate Curriculum

Outcomes

Quality Assurance

fix

Release

refactor

Re-assess
curriculum

Integration with
LMS / CMS

