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Key Research Pointers 

Empirical study play a fundamental role in modern science, helping us understand how 
and why things work, and allowing us to use this understanding to materially alter our 
world. 
Defining and executing studies that change how software development is done is the 
greatest challenge facing empirical researchers. 
The key to meeting this challenge lies in understanding what empirical studies really are 
and how they can be most effectively used - not in new techniques or more intricate 
statistics. 
If we want empirical studies to improve software engineering research and practice, then 
we need to create better studies and we need to draw more credible conclusions from 
them. 
Concrete steps we can take today include: designing better studies, collecting data more 
effectively, and involving others in our empirical enterprises. 
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ABSTRACT 
In this article we summarize the strengths and weaknesses 
of empirical research in software engineering. We argue 
that in order to improve the current situation we must create 
better studies and draw more credible interpretations from 
them. We finally present a roadmap for this improvement, 
which includes a general structure for software empirical 
studies and concrete steps for achieving these goals: 
designing better studies, collecting data more effectively, 
and involving others in our empirical enterprises. 

Keywords 
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1 INTRODUCTION 
An empirical study is really just a test that compares what 
we believe to what we observe. Nevertheless, such tests, 
when wisely constructed and executed and when used to 
support the scientific method, play a fundamental role in 
modem science. Specifically, they help us understand how 
and why things work, and allow us to use this 
understanding to materially alter our world. 

Yet in software engineering research, empirical studies 
have not had the same success. This seems odd given their 
wide use in other sciences. This problem has been widely 
discussed and many articles have pointed out possible 
causes. We argue, however, that many of these articles are 
"implementation-oriented". That is, they suggest that the 
biggest barriers to using empirical studies lie in the details 
of conducting them. 

For example, Norman Fenton et al. [1] point out that many 
empirical studies have poor statistical designs, don't scale 
up to large systems, and are conducted over too short a 
time. Victor Basili [2] suggests that the many differences 
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between individual software projects make comparison 
difficult. Philip Johnson also remarks that practitioners may 
resist being measured. [3]. 

Surely, these and many other factors affect the use of 
empirical studies. Nevertheless, we believe that even if all 
these issues disappeared, empirical studies would still fail 
to have the impact they have had in other fields. This is 
because there is a gap between the studies we actually do 
and the goals we want those studies to achieve. 

Our experience in attempting to use empirical studies to 
change how a development group builds software has 
convinced us that we must also take a "requirements- 
oriented" view. That is, that we must think harder about 
what experiments really are and how they can be most 
effectively used to improve software development. 

We came to this conclusion while trying to improve the 
software inspection process used in a Lucent development 
setting. We found that our greatest difficulties were not in 
designing and conducting individual studies (which was by 
no means easy). Our greatest difficulties were in 
conceptualizing and organizing a body of work that could 
be relied on as the basis for changing an organization's 
long-practiced development processes. 

Moreover, we believe that this problem - defining and 
executing studies that change how software development is 
done is the greatest challenge facing empirical 
researchers. Therefore, in this essay we will examine the 
nature and purpose of empirical studies, discuss how they 
are currently used, and offer some suggestions for 
improving them in the future. 

2 WHY EMPIRICAL STUDIES? 
All large software projects follow some underlying 
development process that includes stages such as 
requirements definition, functional design, unit 
implementation, integration, and so on. The way in which 
these stages are conducted, the tools that are used to 
support them and the rationale for doing so, however, 
varies widely. 

Some companies have rigid processes that all projects 
follow. Others allow individual managers to make 

347 



decisions based on their personal expertise. Others simply 
follow institutional traditions for lack of suitable 
alternatives. No matter which approach is taken, in almost 
all cases, there is little hard evidence to inform these 
decisions, and their costs and benefits are rarely 
understood. One reason for this is that software engineering 
research has failed to produce the deep models and 
analytical tools that are common in other sciences. 

The situation indicates a serious problem with research and 
practice in software engineering. We don't know the 
fundamental mechanisms that drive the costs and benefits 
of software tools and methods. Without this information, 
we can't tell whether we are basing our actions on faulty 
assumptions, evaluating new methods properly, or 
inadvertently focusing on low-payoff improvements. In 
fact, unless we understand the specific factors that cause 
tools and methods to be more or less cost-effective, the 
development and use of a particular technology will 
essentially be a random act. Empirical studies are a key 
way to get this information and move towards well-founded 
decisions. 

Empirical studies take many forms. They are realized not 
only as formal experiments, but also as case studies, 
surveys, and prototyping exercises as well. No matter what 
its form is, the essence of an empirical study is the attempt 
to learn something useful by comparing theory to reality 
and to improve our theories as a result. Therefore, 
empirical studies involve the following steps: 

• formulating an hypothesis or question to test 

• observing a situation, 

• abstracting observations into data, 

• analyzing the data, and 

• drawing conclusions with respect to the tested 
hypothesis. 

Of these, the last step - drawing conclusions - is the most 
important and too often the least well done. It 's important 
because it 's here that we get the information that will 
enable us to guide, to change and to push our field. It 's here 
that we pinpoint inefficiencies, identify where large 
improvements can be made, and determine whether our 
still-forming ideas are on-track. It 's the reason why we do 
empirical studies. The other steps, however indispensable, 
are only prologue. 

Of course, doing all of these steps well is difficult. Done 
well, however, the payoffs will be large, including that: 

• knowledge is encoded more rapidly, 

• low-payoff or erroneous research ideas are discarded 
quickly, 

• high-payoff areas are recognized and correctly valued, 
and 

• important practical issues are considered. 

3 THE STATE OF EMPIRICAL RESEARCH 
We have said that empirical studies are used to compare 
what we believe to what we see. Ideally, these tests should 
allow us to positively affect the practice of software 
development. In this section we will explore to what degree 
we, as a research community, are living up to this ideal. 

Current  Strengths 
Empirical software engineering has matured considerably 
over the last 10-20 years. Consider for example: 

In some software engineering sub-fields empirical 
validation is considered, if not a standard part, then a 
powerful addition to research papers. This has been 
especially notable in the testing community. 

The quality of the average empirical study is rising. 
Researchers are becoming better educated about empirical 
studies and how to conduct them. Consequently, we are 
seeing increasingly more comprehensive studies conducted 
on increasingly realistic programs and processes. 

Funding agencies are recognizing the value of empirical 
studies. In the U.S. for example, National Science 
Foundation (NSF) programs such as the Experimental and 
Integrative Activities program supports research with a 
decidedly experimental flavor. The recently proposed 
Information Technology Research (ITR) program also 
stresses that proposals include a strong validation 
component. Other examples include National Academy of 
Sciences sponsored workshop on the topic of statistics and 
software engineering [4]. 

We've had many talks with currently active researchers 
who have become interested in and are beginning to do 
empirical studies. 

And finally, there have been several empirical studies- 
related tutorials, panels and state-of-the art presentations at 
major software engineering conferences such as ICSE, 
FSE, ICSM and others. 

Of course many factors contribute to this situation. Many 
researchers and practitioners have tackled the problem of 
increasing the use and effectiveness of empirical studies. 
For example: 

There have been several influential and widely quoted 
articles attempting to raise our consciousness about the 
state of empirical studies in software engineering. Tichy et 
al. [5] and Wallace and Zelkowitz [6] both argue that 
empirical studies are underused in software engineering 
relative to other areas of engineering. Both ferociously 
condemn software engineering researchers for not 
validating their research ideas and both have been 
invaluable making this a high profile issue. 
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There is a growing awareness that software engineering 
researchers must be educated about conducting empirical 
studies. To this end, Kitchenham and Pfleeger wrote a 
series of articles for ACM SigSoft Software Engineering 
Notes. These articles covered a variety of topics including 
the logical foundations and design of empirical studies, 
their operation, and techniques for collecting, analyzing 
and interpreting data. 

Several research groups were instrumental in increasing 
researcher access to industrial data. Today we find many 
papers with significant,' detailed accounts of industrial 
experience based on industrial data. One of the forerunners 
of this approach was the Software Engineering Laboratory 
of NASA, the Computer Sciences Corporation, and the 
University of Maryland [7]. 

Finally, many fine researchers have waded in and done 
their own empirical studies. 

Systemic Problems 
Despite, or maybe because of, the strengths listed above 
there are some serious problems. These stem from 
misunderstandings about what empirical studies are and 
why we do them. Before we can improve our use of 
empirical studies we have "to eliminate some problematic 
practices and beliefs. 

Often when someone says that we need more empirical 
studies in software engineering, they really mean that 
research results should be empirically validated. They want 
researchers to demonstrate the value of their new ideas as 
early as possible. This is a good idea for many reasons. We 
believe, however, that it is important to remember that 
empirical studies can be used not only retrospectively to 
validate ideas after they've been created, but also 
proactively to direct our research. 

For example, in compiler optimization research empirical 
studies have identified common code usage patterns. 
Knowing, for instance, that branching behavior is not 
usually random, helps identify and justify the potential 
value of research on branch prediction, aggressive pre- 
fetching, etc. In short, we should use empirical studies also 
to drive our research 

In program committee meetings we often hear lengthy 
discussions over the exact statistical tests used in a study or 
whether it wouldn't have been better to have done one 
thing or another. These discussions reflect a vain search for 
the perfect study. Well, we've done many studies and 
we've never done one perfectly! Of course, we want to see 
proper statistics used. But as we will discuss shortly, what's 
important is not whether the study is textbook perfect, but 
whether the study and its conclusions taken as a whole are 
credible. 

Too many empirical studies study the obvious. As this 
sometimes shows that the obvious isn't so obvious, we 

wouldn't discourage anyone from doing such work. 
Nevertheless, it makes us wonder, "if empirical studies 
mostly just confirm the intuitively obvious, then what's 
wrong with argument by intuition". Clearly, we believe that 
there are things that are true, but that are not intuitively 
obvious. Furthermore, we believe that some of these 
findings will be valuable to software research and practice. 
Therefore, we need to think much harder about the 
questions we are studying empirically. 

There are too many papers whose only selling point is that 
they have lots of data. Data is not enough. Just presenting 
data or simply applying curve-fitting algorithms to them 
may be useful. But they don't usually help us understand 
why the data is as it is. Our data should be used to answer 
questions, not just to fill graphs. 

A more fundamental aspect of this problem is that many 
empirical studies simply lack hypotheses. They pose no 
questions, they serve no well-defined end. Thus at the end 
of the study the researcher can only present observations 
about the data. All studies, even case studies, should be 
designed to answer some question. 

As we said earlier, the most important part of doing an 
empirical study is drawing conclusions. Many papers fail to 
do anything with their results. We need to learn something 
from every study and relate these things to theory and 
practice. 

Since many researchers are reluctant to draw conclusions 
from their data, it's easy to imagine that they aren't too 
happy to generalize them either. Instead of speaking 
thoughtfully about their work they cloak the results in 
"weasel words". So much so that, often, in the end, they 
say nothing. There's obviously a balance to be reached here 
because we don't want researchers to over-generalize, But 
on the other hand, if we can't discuss what a study's results 
might mean then it's hard to make progress. 

4 FUTURE CHALLENGES TO EMPIRICAL 
STUDIES 

The goal of all research, not just empirical studies, is to 
improve the state of research and practice. If we want to 
empirical studies to improve software engineering research 
and practice, then there are two things that we need to do 
better in the future. Said simply, we need to create better 
studies and we need to draw more credible conclusions 
from them. 

Creating Better Empirical Studies 
Creating better studies means doing studies that have some 
chance of directing our research. It implies that we must be 
clear about the goals of our studies, design them more 
effectively, and maximize the information we get out of 
them. 

To do this we should consider at least the following issues. 
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Our studies should strive to establish principles that are 
causal, actionable and general. 

For a factor A to cause outcome B it's necessary that A and 
B are correlated, that A precedes B in time and that there is 
a constructive, testable theory explaining how A affects B. 
Without causality you have no ability to control your 
situation. 

A principle is actionable if the causal agent A can be 
effectively controlled. For example, knowing that larger 
systems normally have more bugs may not be an actionable 
principle if the developer can't  make the system smaller. 

The principles should be applicable in as wide a variety of 
circumstances as possible. 

When we have a causal relationship we know why 
something happens. If the agent is actionable, then we have 
a knob that can be turned to control the outcome. If it is 
general it will be useful to a wide range of people in a wide 
set of  contexts. 

Our studies should try to address important questions. 
There are many questions to answer. Answering some of 
them will be cheaper than answering others; using those 
answers will have more significance in some cases than in 
others. This consideration implies that we need to spend a 
good deal of  time understanding why we're doing our 
studies and what results might come from them. 

Individual studies are rarely, if ever, unequivocal. Instead 
of trying to solve large issues with a single study we must 
attack it with several; each examining different, but 
complementary aspects. Here the critical issue is to use 
each new study to generate and refine our hypotheses. 

Empirical studies are expensive and take time. If  we must 
do multiple studies, then we have to find ways to get the 
information we need at a low cost. This may also mean that 
we have to take some shortcuts in our experimental designs 
or tackle smaller, more focused problems. 

We will also need to enlist the help of  others. Empirical 
studies gain credibility when they are redone and 
rechecked. We need to find ways to help others to 
reproduce our results. 

Credible interpretations 
The credibility of a study refers to the degree of confidence 
we have in its conclusions. If  studies aren't credible, then 
the time spent doing them was wasted. To improve the 
credibility of our studies we must consider several issues. 

If we are trying to establish the existence of causal 
relationships, we need to design experiments with high 
validity. Validity, as we will explain later, is a 
characteristic of an empirical study and is the basis of 
establishing credible conclusions. There are three types of 
validity that are particularly important: internal, external, 
and construct validity. 

Our studies (no matter how they are done) should always 
have hypotheses. With every study we must define what we 
are comparing and why. 

Often a study won' t  be powerful enough to show a causal 
relationship. Still, in many cases we can posit several 
alternative explanations for the data and then use other data 
to discredit them. This still doesn't show causality, but it 
can at least remove obvious alternative explanations from 
consideration. 

We should avoid the temptation 'to measure everything to 
the finest possible precision. Sometimes it will be enough 
to identify an upper and lower bound; other times it will be 
enough to measure at a gross resolution. The definition of 
adequate precision will depend on the problem, but using 
coarse measurements may be one way to limit study costs, 
while still getting important information. 

Our data and procedures need to be made public so that 
others can understand, analyze and possibly replicate our 
studies. Frankly, this can be really difficult, and we haven't  
always managed to keep up ourselves, but we believe it 's 
worth the effort. 

Designing an Empirical Study 
In our careers we've designed and conducted a number of 
studies. None have been without flaws. Our conclusion is 
that no study is perfect and that the real challenge is to 
create, design and conduct high-impact, credible studies. 
This involves managing trade-offs in such a way that we 
maximize: 

• accuracy of  interpretation - the results we see are not 
really the result of  some unknown influence, 

• relevance - our results tell us something important 
about software engineering, and 

• impact - our results affect the practice of or research 
into software engineering 

subject to 

• resource constraints - studies are expensive; we must 
work within resource limitations, and 

• risk - studies, especially those done in industry, can 
disrupt or put at risk industrial partners; we must 
minimize these problems. 

5 T H E  S T R U C T U R E  OF AN E M P I R I C A L  STUDY 
In this section we discuss the structure and components of 
empirical studies. We expect that good empirical studies 
will have each of  these components and that papers written 
about the studies will discuss them as well. These 
components are: 

• research context, 

• hypotheses, 
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• experimental design, 

• threats to validity, 

• data analysis and presentation, and 

• results and conclusions. 

Research Context 
All studies focus on a problem. Here the problem is defined 
and its terminology explained. This section links the study 
goals to what's currently understood about the problem. 
This section has two parts. 

Problem Definition: We define the problem and explain it's 
important terminology. 

Research Review. We provide the historical context 
surrounding the problem. We describe what we know about 
the problem, what has been done previously, what 
questions still remain to be answered and what questions 
will we be focusing on. 

Hypotheses 
Hypotheses are essential. They state the research questions 
we are asking. Sometimes there is confusion surrounding 
the term hypothesis. In fact there are really two kinds of 
hypotheses. The trick is to" think of a study as a procedure 
for making a comparison. Therefore, we start at with high- 
level, abstract questions and refine them into low-level, 
concrete questions. 

Abstract hypotheses are high-level, natural language 
statements that are usually stated in everyday terms. They 
say things like, "meetings are an indispensable part of the 
inspection process". 

Concrete hypotheses are stated in terms of the study's 
design. They may say things like, "teams who do 
inspections with meetings find more defects than teams 
who do inspections without them." 

We begin by stating our hypotheses first in everyday terms. 
Then we translate them to terms that exist in the study's 
design. To the degree that this mapping is done well, 
comparisons made at the level of concrete hypotheses can 
be mapped back to the comparisons made at the level of 
abstract hypotheses. 

Study Design 
A study's design is a detailed plan for creating the data that 
will be used to test its hypotheses. It has several 
components: 

One component is a set of variables that link causes and 
effects. Typically, there are two kinds of variables: 
dependent and independent. 

Independent variables are attributes that define the study 
setting. In some cases, especially when comparing two 
situations, these variables are actively manipulated. 

Dependent variables are end-process outputs whose values 
are expected to vary predictably when the values of 
independent variables change. 

The study design may also include a plan for systematically 
manipulating the independent variables while observing the 
dependent variables. 

The final component is the operational context of the study. 
This is a description of the physical, intellectual and 
cultural surroundings in which the study takes place. It is 
included so that the study's users can better interpret the 
data. 

Threats to Validity 
Threats to validity are influences that may limit our ability 
to interpret or draw conclusions from the study's data. 
There are at least three kinds of validity that must be 
protected from such threats. 

Construct validity means that the independent and 
dependent variables accurately model the abstract 
hypotheses. 

Internal validity means that changes in the dependent 
variables can be safely attributed to changes in the 
independent variables. 

External validity means that the study's results generalize 
to settings outside the study. 

Data Analysis and Presentation 
Two general approaches to presenting and analyzing data 
are called Quantitative and Qualitative analysis. 

Quantitative analyses, as the name suggests, deal mainly 
with comparing numeric data. The comparisons are 
typically aimed at rejecting or not rejecting a null 
hypothesis. Two of the tools used in quantitative analysis 
are hypothesis testing and power analysis. 

Hypothesis testing determines the confidence level at 
which the null hypothesis can be rejected. The confidence 
level is a measure of the probability that the null hypothesis 
will be erroneously rejected. Some people believe that this 
confidence level must be less than i in 20 or 0.05 for a 
result to be significant. It doesn't have to be. In situations 
where data is plentiful and measurements precise, higher 
confidence levels may be called for. Since data is often 
limited and measurement imprecise in studies of software 
engineering, lower confidence levels may be justified. In 
any event, we suggest that researchers report the 
confidence level (without predetermining the significance 
level) and let the reader decide its significance. 

Power analysis determines the likelihood that the null 
hypothesis will not be rejected when it really should be. 
This analysis depends on the magnitude of the effect and 
the amount of data we have. This isn't quite a standard 
practice yet, but something that we should consider more. 

351 



Qualitative analysis, on the other hand, tends to use data 
that is less readily quantified: observations, interviews, 
diaries and such. These techniques tend to be used when we 
want to understand people's perspectives of a situation. 
Typically, researchers must be very careful about how their 
biases affect their data. One technique for doing qualitative 
analysis is call Grounded Theory [8] 

In software engineering research qualitative analysis is less 
widely-used than quantitative analysis, but we can expect 
to see more of it in the future. As Glasser and Strauss [8] 
point out "In many instances, both forms of data are 
necessary--not quantitative used to test qualitative, but 
both used as supplements, as mutual verification and, most 
important for us, as different forms of data on the same 
subject." 

Results & Conclusions 
After analyzing the data we have to make sense of it. This 
steps leads us back to our original questions. Here we need 
to focus on the following things. 

We have to understand and explain the limits of the study. 
What conclusions can we draw? Where are we limited in 
drawing conclusions? What might have influenced our 
results?. 

Given our understanding of the validity limits and any 
other information we might have, what does the data really 
say? Are there ambiguities in our interpretation? Can we 
think of other explanations for the data we see? Are our 
results really believable? 

Tie results back to the initial questions. Try to explain what 
questions we answered; don't simply present the data. 

Discuss the practical significance of the results. If these 
results proved to be general what could a manager or 
developer do with them? 

Ensure that you have given enough information to others to 
help them repeat the study if they want to. 

6 CONCRETE STEPS 
As we argued above, software engineering researchers must 
realign their thinking about the goals of empirical studies 
and improve how they conduct and evaluate them. In this 
section we discuss some concrete strategies for doing so. 

Designing the Studies 
Asking InsighO~l Questions 
Ultimately, the most important thing researchers can do is 
to ask insightful questions. Just as with software 
development, clear requirements improve the likelihood of 
a high quality outcome. Note however that an important 
question isn't necessarily an insightful one, especially if it 's 
very difficult to answer. For instance, it's certainly 
important to ask whether object-oriented programming is 
effective, but it's hard to see how a small number of studies 
can be expected to answer it. Instead, we have to narrower 

the questions, make them more precise, and ask the ones 
that lead to important answers. 

Knight and Leveson's study on N-Version programming is 
a good example of such an insightful question [9]. N- 
Version programming refers to using software redundancy 
in the hopes of achieving very high reliability. Knight and 
Leveson noted that this hope depends heavily on the 
assumption that redundant modules fail independently. If 
they did not, then the reliability of the total system would 
not be as high as expected. 

Thus, they studied whether independently-developed 
modules do indeed fail independently. The conclusion was, 
instead, that the module failures were not independent and 
that, therefore, N-Version programming did not deliver on 
its promise of high reliability. 

This sparked a great deal of discussion, raising questions 
about the validity of the study itself, the exact effect of 
dependent failures on the reliability calculations, and 
whether failure dependence could be avoided. This is 
exactly what a good study can do. 

Families of Studies 
Not every question lends itself to a single empirical study 
as well as N-Version programming did. For many issues we 
will have to do many studies. In these cases we design and 
conduct not just a study, but a family of studies. Here we 
have to think about the range of questions we will ask and 
design individual studies to support our overall goals. 

Schneiderman et al. [10] did a family of studies on the 
value of flowcharts as a programming aid. They began by 
determining how flowcharts might theoretically be useful. 
That is, they decided that flowcharts might support 
program composition, program comprehension, program 
debugging, and program modification. Next, they studied 
each of these four possibilities in isolation. In all cases they 
could not demonstrate that having a flowchart was better 
than not having one. Thus they concluded that flowcharts 
were not as useful many people believed them to be. 

In some cases, we will not know the range of questions 
beforehand but find them as we conduct our experiments. 
It may well be that we raise more questions than we answer 
and so need a sequential family of studies to resolve these 
related issues as they arise. 

The key observation here is that with some thought we can 
design and conduct a series of studies that together help us 
answer a larger question. 

Building Partnerships 
The kinds of experiments we're suggesting often will be 
difficult for a single individual. Deepening the questions 
and broadening the number of studies will make it more 
unlikely that any one person will have all the required 
information or resources. One way to handle this problem 
will be to create partnerships. 
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One kind of partnership involves placing students in 
industrial environments. This serves several purposes. The 
student can conduct and monitor the study, while at the 
same time learning about the practice of software 
engineering and developing professional contacts. Another 
important benefit is that the student can handle some 
study's paperwork, relieving the developers of that burden. 
This is a powerful benefit as the fear of extra work was one 
reason our industrial partners had for not wanting to 
participate in studies. 

Another kind of partnership involves creating 
interdisciplinary research teams. Sometimes a problem is so 
large that different areas of expertise are needed. In these 
cases it can be useful to create partnerships with people 
outside of software engineering. 

One example is the Code Decay Project [11] based at 
Lucent Technologies. It is a long-term, multidisciplinary 
project examining the fundamental causes, symptoms, and 
remedies for code decay. The primary data source is the 
Lucent 5ESS TM switching system. It is composed of more 
than 50 subsystems and contains over 18 million lines of 
code. Along with the source the data includes the system's 
change control history for the past 15 years covering 3.6 
million code changes implementing 672,000 change 
requests. There is also data on its planned and actual 
development milestones, effort and testing data, 
organizational history, development policies, and coding 
standards. The goals of this project are to define response 
variables and document the existence of code decay, 
develop code decay indices, identify factors causing it, and 
create and evaluate prevention strategies. 

Obviously one person can't carry out such a project. In fact, 
the project team contains researchers in Statistics, 
Experimentation, Organizational Theory, Programming 
Languages, Software Engineering, and Visualization. 

Long-running, in vivo, experiments 
Many people argue that empirical studies can't be done in 
live software developments (in vivo or in situ). Their 
reasoning is that since different groups can't be asked to 
build copies of the same system, there are no controls. This 
isn't false, but the example assumes that we always want to 
study entire development projects and that doing the project 
twice is the only way to have controls. 

These assumptions aren't always correct. Some 
development tasks such as bug-fixing, testing, and 
inspections lend themselves to in vivo studies. This is so 
because they are executed frequently, are of short duration, 
and, relative to an entire project, are inexpensive. Also, we 
can establish controls by insuring that tasks are randomly 
assigned to different treatments. 

Nevertheless, care must taken in any study to preserve the 
rights of the subjects. This problem is harder still in in vivo 

studies because the studies often last longer subjects and 
the subjects have many other work responsibilities. 

One thing we have done in both in vitro and in vivo studies 
is to give each study participant a "bill of rights", 
reminding them of their right to withdraw from the study at 
anytime with no recriminations from the researchers or 
their management [12]. We ask each participant to 
acknowledge this right at the beginning of the study by 
signing a release form. 

Another important problem is knowing when to stop the 
study. Studies using professional developers creating 
professional products can have very strong validity, but can 
put the participating project at risk. One solution is to 
discontinue any problematic treatment once there are 
enough observations to convince yourself that nothing 
"unlucky" has happen. This will require some statistical 
modeling and will definitely require closely monitoring the 
study. 

Getting the Data 
Many studies get their data by measuring subjects as they 
perform predetermined tasks. This is a costly way to get 
data. We should, therefore, explore other methods for 
collecting data. 

Retrospective artifact analyses 
One resource to which we haven't paid enough attention is 
the version control system (VCS). Many analyses of the 
long-term effects of different processes and tools depend on 
the ability to recreate snapshots of the software at different 
points in time. A version control system (VCS) tracks each 
change a developer makes to the system and, as a result, 
can recreate a consistent snapshot at any point in time. 
Examples of VCSs include RCS [13] and SCCS [14]. 
While this basic functionality of VCSs is essential for 
version control, there is much data in a VCS that is ignored 
when simply using it to extract snapshots of source code. 

For instance, A VCS tags each change with a substantial 
amount of additional contextual information. Knowing 
what code was changed, when it was changed, who made 
the change, and so on, can yield valuable insights into what 
actually went on in the course of code development, 
sometimes better than developers' memories. Also, VCS 
data is amenable to automated analysis. Furthermore, most 
large software development organizations employ some 
form of VCS. Thus analysis methods built for VCSs will be 
widely applicable to many software projects. 

Furthermore, this kind of data can be used in many other 
ways. 

• It can be the basis for building program testbeds (well- 
documented, publicly-available artifacts that can be 
used by other researchers); 

• it can be used to better study system evolution; 
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• it can be used to help understand work patterns (for 
creating benchmarks, for example); and 

• it can be used to study fault and failure models for new 
programming languages. 

Simulation and Mathematical Modeling 
Another way to generate data may be by using simulations 
or mathematical models. These approaches can be very 
powerful, but have their own limitations. We'd like to see 
greater use of simulation and modeling together with 
directed studies. 

One interesting example of this is a study of system 
integration strategies done by Solheim and Rowland [15]. 
For this study the researchers built a number of artificial 
systems (shells of the systems with only rudimentary code 
inside) whose failure characteristics they could alter. They 
then tested these systems under different integration 
strategies and measured their fault detection ability and 
system reliability. Other examples include using 
mathematical models to examine the cost-effectiveness of 
certain maintenance changes [16] and the use of 
experimental design theory to generate test cases [17]. 

Involving Others 
Meta-Analysis 
No single study gives unequivocal results. Therefore, it is 
imperative that the research community integrates and 
compares studies that address common hypotheses. This is 
the only way to gain confidence that empirical results are 
real and not just due to random variation. Below we outline 
three approaches. 

Integrating multiple studies in a credible way isn't simple. 
Two studies can address the same issue, but be conceived 
and executed quite differently. Thus, direct comparison of 
the results is often impossible because the studies differ 
considerably in their designs, instrumentation, subject 
population, and analysis methods. 

A classic approach to understanding what several studies 
say about some phenomenon is to conduct a literature 
review, qualitatively summarize existing results, and 
manually synthesize them. The drawback of this approach 
is that it lacks precise methods for combining different 
results. 

A statistical approach for integrating multiple studies is 
called Meta-analysis [18]. This approach has two steps. 
First, the experimenters attempt to reconcile the primary 
experiments--i.e., define a common framework with which 
to compare different studies. This involves defining 
common terms, hypotheses, and metrics, and characterizing 
key differences. Next, the data from the primary 
experiments are transformed or recalculated according to 
agreed upon definitions. In the second step the transformed 
primary data is combined and reanalyzed. Unfortunately, it 
is not always clear when Meta-analysis is appropriate, what 

statistical models should be used, or when it is acceptable 
to combine data from disparate sources. 

And, of course, there are ad hoc approaches that fall 
between the two. Sometimes you can reconcile two 
experiments without combining any of their data. This 
process will often highlight similarities and differences 
between the two experiments, allowing you to better 
understand what data are comparable and which are not 
[19]. 

Educational Laboratories 
Several authors claim that the quality of many CS 
experiments is poor. Whether or not you agree with these 
assessments, it is clear that the quality of CS experiments 
needs to be improved. One factor contributing to this 
situation is that researchers are rarely trained to perform 
high quality experiments. An easy way to remedy this is to 
integrate experimental methods into the CS graduate 
curriculum. 

One way to do this is to create short (say 4-week) teaching 
modules in which students perform experiments, collect 
and analyze data, and test hypotheses as part of their 
graduate software engineering courses. 

These teaching modules would support three primary 
objectives. 

• Show how experiments can be used to evaluate 
hypotheses concerning open research issues, 

• Teach students to design and conduct experiments to 
evaluate their own research, and 

• Teach basic statistical procedures for collecting and 
analyzing data from their own experiments. 

These modules could be captured in the form of 
educational laboratories. Educational laboratory exercises 
are a standard part of physical science education. These 
"labs" require students to learn and apply the scientific 
method, and examine physical principles. While conducting 
a lab a student monitors a physical process, gathers and 
analyzes data about the process, and uses the data to test 
hypotheses--which often challenge his or her intuition. 

To construct these labs researchers would package 
empirical studies into a laboratory "manual." The manual 
contains the training materials for lectures, reference 
articles, sample specifications, data collection forms, a 
description of the experimental procedures, and a post- 
experiment survey and take-home assignment. 

After the lab has been performed the instructor collates the 
data, recoding it to ensure the anonymity of the 
participants. Next, the hypotheses behind the experiment 
are fully explained and the students are taught the statistical 
rationale for the experimental design, and learn statistical 
procedures for data analysis and hypothesis testing. 
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The final step could involve a take-home assignment in 
which the students are required to propose an experiment to 
evaluate some hypotheses in which they are interested. 

7 SUMMARY 
This article has provided an overview of the current state of 
empirical studies and delineated its strengths and 
weaknesses. We also discussed the important issues that 
must be addressed in creating a rigorous and credible 
empirical discipline for software engineering. 

To improve this current state, we must create better designs 
and draw more credible interpretations from them. As a 
background for where we need to go in the future, we have 
outlined a general structure for software empirical studies. 
We concluded with concrete steps that can be used 
achieving these goals: designing better studies, getting the 
data and in involving others in our empirical enterprises. 

While we are still relatively immature as an empirical 
discipline compared with other sciences and engineering 
disciplines, progress has been made and we are optimistic 
that we can and will achieve the needed rigor that will 
underpin the development of deep understandings of 
software engineering. 
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