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Camera Lens Geometry 1

THE BASIC GEOMETRY BEHIND A CAMERA LENS

Lenses used in cameras are called converging lenses because they bend rays of light that are parallel
to the normal line through the center plane of the lens.  As an example of how a converging lens bends
horizontal rays of light, see  below.  As the horizontal light rays pass through the lens they allfigure 1
end up going through the same point on the other side of the lens.  The lens causes all horizontal light
rays to converge at one point which is known as a focal point.
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 Figure 1. A converging lens.  Horizontal light rays to the left of  the lens are
   bent by the lens and all go through the focal point F  on the right.2

Each lens actually has two focal points which lie on opposite sides of the lens, but they are
equidistant from the center of the lens.  In the above figure the two focal points are denoted by  andJ1
J2.  We assume the object being viewed through the lens is the penguin on the left.  The image formed
is shown to the right of the lens and appears inverted.  Note the image on the right appears larger than
the original object which is on the left.  Both the object and the image lie outside the vertical band or
region which is between the two focal points  and .J J1 2

The entire action of the lens may be understood by tracing rays of light.  In fact, only two special
rays need to be traced to determine both the size and the position of the image.  First, consider the line
starting at point  and passing through point .  Since this line is parallel to the normal line through theE F
lens center, the ray of light bends as it passes through the lens at point  in such a manner that it goesF
through the second focal point labeled as .  In fact, all rays of light parallel to the center line J J J2 1 2
will pass through the focal point .  For example, trace the three rays of light that start in the lower-leftJ2
part of .  Any ray of light not parallel to the center line  will not pass through a focal point.figure 1 J J1 2
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The line  in  above is a special line which goes through the exact center of the lens asEH figure 1
indicated by point .  The ray of light represented by the line  is the only one shown in H EH figure 1
which is not bent at all by the lens.  In fact, only lines through  will not be bent by the lens.  ThusH
points , , and  in the above figure are collinear.  The size and position of the image are determinedE H G
by the two rays of light represented by the paths  and .  Point  is determined as the pointEFJ G EHG G2
of intersection of the two lines  and .FJ EH2

THE THIN-LENS EQUATION

In  above we have labeled the focal length of the lens using the letter .  Thus  is the samefigure 1 0 0
distance the two focal points lie from the lens center.  We have also labeled the distance the object and
image lie from the lens center by using the notations  and , respectively, for the object and image.. .9 3

Next we will derive the fundamental equation which gives the relationship between the three quantities
0 . ., , and .9 3

In ,  has the same measure as  and .   is similar to .figure 1 nEHL nKHG nHGI ˜EHL ˜HGI
Thus we have the following relationship between the object and image heights and the object and image
distances from the lens center.  We let  and  denote the respective heights of the object and image.2 29 3

        
        

        or        
2 2 2 .

. . 2 .
œ œ

9 3 3 3

9 3 9 9

If we place an -coordinate system with its origin at point  then the line  would have slopeBC H FJ#
2
0

9  and go through the point   The equation of the line is:J Ð0ß !ÑÞ#

C œ Ð B  0 Ñ
2

0
    

  
  

9

Now using these equations and substituting the coordinates of point ,  when ,  weG C œ 2 B œ .3 3

can derive one of the fundamental equations for the lens:

2 œ .  0 Ñ C œ 2 B œ . Þ
2

0
3 3 3 3

9  (                   Substitute  and 
  

  

     Multiply out the right side.
  

  
2 œ  2

2 † .

0
3 9

9 3

     Divide both sides by .
   

    
2 .

2 0
œ  " 2

3 3

9
9

        
        

    Substitute .
. . 2 .

. 0 2 .
œ  " œ

3 3 3 3

9 9 9
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                        Divide both sides by .
      
      
" " "

. 0 .
œ  .

9 3
3

                          Add    to both sides.
          
          
" " " " "

0 . . 0 .
œ  

9 3 9

This last equation is known as the thin-lens equation.

THE THIN-LENS EQUATION

      
      

     
" " "

0 . .
œ 

9 3
 where

       0 œ   the focal length of the lens
   .9   the distance between the center of the lens and the object.œ
      the distance between the center of the lens and the image..3 œ

Next, refer to  below.  This figure differs from  in that the penguins are not standingfigure 2 figure 1
on the center line.  In fact, the center line partially goes through each penguin.  We also assume the
object being photographed is taller than the physical height of the camera lens or the physical size of one
picture frame on the film.
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 Figure 2. A camera image of an object is focused on the film plane behind the
    camera lens.
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The Thin-Lens equation can be expressed in a somewhat simpler form by considering all distances
as being measured in terms of multiples of the focal length .  If we let    and let  0 D C† 0 œ . † 0 œ .9 3

then  and  measure the object and image distances in terms of multiples of the focal length.  Thus inD C
figure 2 above,  measures the length  and  measures the length , but the units for  and  are bothD . C . D C9 3

in terms of the focal length.  Substituting these values in the thin-lens equation produces a simple
relationship between  and .C D

                  The thin-lens equation
      
      
" " "

0 . .
œ 

9 3

                  Substitute  and .
      
      
" " "

0 D C
œ  . œ D † 0 . œ C † 0

† 0 † 0
9 3

                     Multiply through by .
    

" œ  0
" "

D C

This last equation can be expressed in an even simpler form by introducing two new measurements
called  and  shown in  below.  The quantities  and  are also measured in terms of multiplesa b figure 3 a b
of the focal length .  In  below we assume   and .  It is best to0 +  0 , œ .  0figure 3 † 0 œ . † 09 3

think that  measures the length , but the units of  are in terms of focal lengths.  Also, we can+ .  0 +9

think that  measures the length of , where the units of   are also in terms of focal lengths., .  0 ,3

While looking at  below you can assume  measures the number of focal lengths the objectfigure 3 +
lies to the left of the left focal point .  You can also assume  measures the number of focal lengthsJ ,1
the image lies to the right of the right focal point .  Recall that the object and the image lie outside theJ2
region between the two vertical lines through the two focal points.
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 Figure 3. The distances of the object and image beyond one focal length
   as represented by af and bf.
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Now we may derive the simple relationship that exists between the two numbers  and .+ ,

+  0 œ . œ D ,  0 œ . œ C† 0 † 0 † 0 † 0      and      See  above.9 3           figure 3

Ð +  " Ñ 0 œ D Ð ,  " Ñ 0 œ C 0    and  Factor out † 0 † 0 .

+  " œ D ,  " œ C 0    and  Divide by .

                             "    Previous thin-lens equation.
    

œ 
" "

D C

                                 Substitute  and .
    

    
" œ  D œ +  " C œ ,  "

" "

+  " ,  "

          Clear the denominators.Ð +  " Ñ Ð ,  " Ñ œ Ð ,  " Ñ  Ð +  " Ñ

+  ,  " œ +  ,  "  ",  +              Simplify.

                            Subtract  from both sides.+ œ " +  ,  ",

                              Divide by .
  
  

+ œ ,
"

,

This last equation has a simple but important and eminently useful interpretation.   is the number of+
focal lengths the object lies to the left of the left focal point.   is the number of focal lengths the image,
lies to the right of the right focal point.  Thus interpreting the last equation we know the further the
object lies away from the left focal point the closer the image lies near the right focal point.  Vice versa,
the further the image lies to the right of the right focal point the closer the object must be to the left focal
point.  The values  and  are reciprocals of each other.+ ,

Note that if  then we also have  which means when the image lies two focal lengths to the+ œ " , œ "
left of the lens center, the image also lies two focal lengths to the right of the lens center.  In this case,
and only in this case, is it true that the object and image heights are the same.  In fact, next we will show
that the magnification factor of the object is the number   which is the same as the number .  

  
"
+ ,

Given the proportion via similar triangles that  we can solve for 2 2
. .
9 3

9 3
œ 2 Þ3

2 œ † 2
.

.
3 9

3

9
  

This shows the fraction  is the magnification factor which determines the image height from the.
.
3

9

object height.
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Next we show the magnification factor  is the same as the number ..
.
3

9
,

. , † 0  0 Ð ,  " Ñ † 0 ,  " ,  " Ð ,  "Ñ † ,

. + † 0  0 Ð +  " Ñ † 0 +  " Ð "  , Ñ
œ œ œ œ œ œ ,

 "

3

9
"
,

So the number  can be used to determine the image height from the object height.,

2 œ , † 23 9  

The interplay between the numbers  and  can be illustrated as follows.  When , the object is+ , + œ $
$ % focal lengths to the left of the left focal point (it is  focal lengths from the lens center) and the image
is  the size of the object and the image lies  of a focal length to the right of the right focal point (the 1  1 

 3  3 
image is  focal lengths away from the lens center)."  œ" %

$ $

In normal practice the object is usually much more than  focal length to the left of the left focal"
point.  In this case  which implies .  Thus when a camera lens focuses the image on the film,+  " ,  "
the lens never has to move more than one focal length to bring the image into focus.  The image is
focused by moving the lens relative to the plane of the film inside the camera.  See  which is anfigure 2
example of  the normal photographic situation where  and .+  " ,  "

When doing close-up photography the object will be between  and  focal lengths from the lens" #
center and in this case  will satisfy the inequality    which in turn implies .  Since  is+ !  +  " ,  " ,
the same as the magnification factor, the image produced on the film will be larger than the real-life
image size.  Thus relatively small objects can be blown up to sizes larger than real-life.  For example,
imagine photographing the head of a pin.   corresponds to close-up photography.Figure 1

Referring back to , we can imagine how the image size and position vary as the objectfigure 1
position varies.  Think of the line  (  is the lens center  as swiveling or pivoting about point .EH H Ñ H
Point  remains at the peak of the left penguin's bill and in fact remains at the same height above theE
center line no matter where the left penguin the object  is positioned.  When point  is far away fromÐ Ñ E

the lens center the line  becomes more horizontal and the image height decreases.  As point  movesEH E
closer towards the left focal point  ( but  remains to the left of  the line  becomes moreJ E J Ñ EH1 1
vertical and the image height increases.  In fact,  remains constant regardless of the distance thenHFJ#

object is placed from the lens.    which is independent of tana bnHFJ œ . Þ# 9
0
29

When point  is between  and  focal lengths from the lens center the image size will actually beE " #
larger than the object size.  Thus  must be positioned between  and  focal lengths in order to doE " #
close-up photography.  In practice, point  would never get closer to the lens center than  focal length.E "
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If you look closely at  you can determine that points , , and  on the object penguinfigure 2 E F G
correspond one-for-one with the points , , and  on the image penguin.  Points , , and  areO N M E F G
vertically aligned on the object while points ,  and  are vertically aligned on the image.  In O N M figure 2
we assume these three points all lie in the film plane.

In particular, you should try ray tracing point  on the object penguin's breast.  The horizontal lineF
goes through the lens at point , travels down through the focal point , and finally reaches point  onI J N#

the image penguin's breast.  Points  and  are corresponding points on the two penguins.  Point F N G
between the object penguin's feet ray traces to point  which is between the image penguin's feet.  PointM
E O at the tip of the object penguin's bill maps directly through the center of  the lens to point  which is
the tip on the image penguin's bill.  If the film in our camera were taking 35  slides then the image77
height  would have to be sufficiently small to fit within one slide-shot picture frame on the film.23

If you use a ruler and compute ratios you can determine the different values for  and  that are in+ ,
both  and .   is essentially the same as .  In fact, the reason for makingfigure 1 figure 3 Figure 2 figure 3
figure 1 figure 3 a and  different is so you could visualize the difference between the  value being less
than one focal length (  and the  value being greater than one focal length (  and figure 1 figure 2 figureÑ +
3 ).

For  we estimate the actual focal length to be about .  The distance between  and figure 1 #%77 L J1
is about  so the  value should be  .  This means the  value should be the reciprocal,"!77 + œ ,10  5 

 24  12 
 12 
 5 œ #Þ% , #Þ%.  Since the  value is the magnification factor, we assume the image is about  times as large

as the object.  In fact, when we measure the heights of the object and image we find their heights are "#
77 #*77 #Þ% ‚ "# œ #)Þ) 77 and  respectively.  Note that , which rounds to 29 to the nearest .  In
figure 1, the distance between  and  is about .  Note that with , we should find theJ K &)77 0 œ #%2
length of   will be  which rounds up to to the nearest .J K #% ‚ #Þ% œ &(Þ' &) 772

For  we estimate the actual focal length to be about .  The distance between the objectfigure 3 #%77
and  is about  so the  value should be  = .  This means the  value should be theJ &)77 + ,"

 58 29
 24 12

reciprocal,  or about %.  The height of the object is about  while the height of the 12 
 29 ¸ !Þ%"$) %" $$77

image is just under .  Note that , which would round up to about  to the"%77 $$ ‚ !Þ%"$) ¸ "$Þ'& "%
nearest .  The distance between the image and  in  is about .  Note that77 J "!772 figure 3
#% ‚ !Þ%"$) ¸ *Þ*$ 77 "!77, or rounded to the nearest , about .

So the values predicted by the equations actually match what we can measure in the figures.
Understanding the fundamental relationship between the  and  values allows you to interpret the basic+ ,
geometry behind a camera lens.  This may not make you a better photographer, nor will it qualify you to
become a lens designer, but you should now have a better understanding of  the mathematics behind a
camera lens, and that by itself is progress!
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THE BASIC GEOMETRY BEHIND A MAGNIFYING GLASS

Next we consider the geometry of a magnifying glass.  With a magnifying glass the viewer's eye is
considered to be fixed at one focal point and the object being viewed is on the other side of the lens, but
within a distance shorter than the focal length.  The image appears to the left of the left focal point,
appears enlarged, and has the same orientation as the original object.  The image is a virtual one.  This
means the image position appears to the eye as if it were actually at the place shown in  below,figure 4
even though no light rays make the image there.  The true image is formed by the light rays that enter
the viewer's eye.
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do
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Figure 4. The virtual image of an object under a magnifying glass.

As with a camera lens, horizontal rays of light may be traced from the object, through the lens and
through the focal point .  The difference is that these same virtual rays may be traced backwards fromJ#

J GK GH# along straight lines until they intersect the vertical line .  The line  through the center of the
lens is not bent at all by the lens.  The ray of light that extends from the large penguin's bill at point  toG
the focal point  is straight.  In fact, all virtual rays from the virtual image penguin that aim directly atJ#

the focal point  are not bent by the lens.J#

Point  in  is the point of intersection of the two lines  and .   is similar toG FJ EH ˜ELHfigure 4 #

˜GKH and we have the same ratio between the object and image heights and the object and image
distances from the lens, as with the converging camera lens.

    
    

  
2 2

. .
œ

9 3

9 3
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If we place an -coordinate system with its origin at point  then the equation of the line BC H FJ#

would be the same as for the converging lens.

C œ Ð B  0 Ñ
2

0
    

  
  

9

The difference is that we now substitute    when   (the signs of both coordinates ofC œ 2 B œ .3 3

point  are reversed from what they were for the camera) and we derive a new fundamental equation forG
a magnifying glass.

2 œ Ð.  0Ñ C œ 2 B œ . Þ
2

0
3 3 3 3

9 Substitute   and  

2 œ  2
2 .

0
3 9

9 3 Multiply out the right side.

2 .

2 0
œ  " 2 Þ

3 3

9
9Divide both sides by 

. .

. 0
œ  " Þ

3 3

9
Substitute  for . 2

. 2
3 3

9 9

" " "

. 0 .
œ  . Þ

9 3
3Divide both sides by 

" " "

0 . .
œ 

9 3
Subtract  from both sides."

.3

THE FUNDAMENTAL EQUATION FOR A MAGNIFYING GLASS

" " "

0 . .
œ 

9 3

Note that this is analogous to, but different from, the thin-lens equation for a camera.

Analogous to what was done with the converging camera lens, we can let the quantity  measure the,
distance between the image (virtual) and the focal point  and we can let  measure the distanceJ +#

between the object and the focal point .  The units for  and  are in terms of the focal length .  SeeJ + , 0"

figure 5 below.
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Figure 5. Focal length measurements  bf  and  af  relative to the image and
   the object and the two focal points.

" " "

0 . .
œ 

9 3
Fundamental equation for a magnifying glass.

" " "

0 0  +0 ,0  0
œ  . œ 0  +0 . œ ,0  0ÞSubstitute  and  9 3

" œ  0
" "

"  + ,  "
Multiply through by .

Ð"  +ÑÐ,  "Ñ œ Ð,  "Ñ  Ð"  +Ñ Ð"  +ÑÐ,  "ÑMultiply through by .

+,  +  ,  " œ ,  "  "  + Expand left side; simplify right side.

+, œ  " +  ,  "Add  to both sides.

+ œ ,
"

,
Divide both sides by .
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Note that this equation is the same as for a regular camera lens.   The smaller the value of  the+
larger the virtual image.  Also, the larger the value of  the smaller the virtual image.+

 As was also true for a camera lens, the number  is the magnification factor between the object, œ "
+

and the image. By looking at  we can see that the magnification factor is and next we showfigure 5 2
2
3

9

this fraction is the same as .,

2 . ,0  0 0Ð,  "Ñ ,  " ,  " Ð,  "Ñ,

2 . 0  +0 0Ð"  +Ñ "  + Ð,  "Ñ
œ œ œ œ œ œ œ ,

" 

3 3

9 9
"
,

In the case of a magnifying glass the value  satisfies the inequality: . This implies that, ,  #

!  +  Þ"
#


