To the Graduate Council:

I am submitting herewith a thesis written by Nair Venugopal entitled “The Design, Im-
plementation, and Evaluation of Cryptographic Distributed Applications: Secure PVM.” 1
have examined the final copy of this thesis for form and content and recommend that it be
accepted in partial fulfillment of the requirements for the degree of Master of Science, with
a major in Computer Science.

Tom Dunigan, Major Professor

We have read this thesis
and recommend its acceptance:

Accepted for the Council:

Associate Vice Chancellor
and Dean of the Graduate School

The Design, Implementation, And Evaluation Of
Cryptographic Distributed Applications:
Secure PVM

A Thesis
Presented for the
Master of Science Degree

The University of Tennessee, Knoxville

Nair Venugopal
May, 1996

Acknowledgments

I would like to thank my advisor, Dr. Tom Dunigan, for the help and guidance he
provided all through my academic career at UT-Knoxville. I thank the other committee
members, Dr. Bill McClain and Dr. David Straight, for their comments and assistance in
developing this thesis. I would also like to express my appreciation to Al Geist and Bob
Manchek for their time and assistance in making this work possible.

I am indebted to my parents S.N.K. Nair and Vilasini Nair, for their love and support.
I also thank Biju, Lathu and Jayasree for still liking me, though I have given them many
reasons why they shouldn’t. Finally, I would like to thank all my friends at Knoxville,
especially Mohamad Eljazzar. It has been a privilege to share an office with him for the

past two and one-half years.

ii

Abstract

This research investigates techniques for providing privacy, authentication, and data
integrity to message passing in distributed applications. Various software mechanisms for
message hashing and encryption are evaluated, including techniques for key generation and
key distribution. Different crypto-APIs’ are evaluated, and the distribution of a single
session key for n-party communication is implemented.

A secure version of PVM (Parallel Virtual Machine) is developed using Diffie-Hellman,
MD5, and various symmetric encryption algorithms to provide message privacy, authenti-
cation, and integrity. The modifications to PVM are described, and the performance of

secure PVM is evaluated.

iii

Contents

1 Introduction

1.1

1.2

1.3

Objectives and Significance Lo
Methods and Assumptions

Thesis Overview o e e e e e

2 Survey of Related Work

2.1

2.2

2.3

Cryptography
2.1.1 Secret Key Encryption o 0oL
2.1.2 Public Key Encryption
2.1.3 Secure One-Way Hash Functions
Authenticationo
2.2.1 User-Host Authentication
2.2.2 Host-Host Authentication
2.2.3 Message Authentication L.
Key Distribution Systems L o 0oL
2.3.1 Kerberos

iv

16

19

2.3.2 SPX . e 30

2.3.3 Diffie-Hellman 32
2.3.4 X509 ..o 33

2.4 UNIX Security Systems e 35
2.4.1 Network layer security 0oL 35
2.4.2 Transport layer security Lo oL 39
2.4.3 Session layer securityo o oo 42
2.4.4 Application layer securityo 45

2.5 Distributed Computing Environment 50
2.6 Security in IPv6. 52
2.6.1 Authentication Header (AH) 53
2.6.2 Encapsulating Security Payload (ESP) 54
2.6.3 Key Managementin IPv6 55

3 Design Issues in Crypto Systems 56
3.1 Crypto APDs L o e 56
3.1.1 Cryptographic Service Calls 58
3.1.2 Generic Security Service Application Programmer Interface 60
3.1.3 SSH’s Crypto-APL o 61

3.2 Random Number Generation 63
3.2.1 Limitations of Some Random Number Generation Techniques 64
3.2.2 Sources for Randomness 0 oo 65
3.2.3 Key Generation Standards o oo 66

3.3 Key Length
3.4 Big-Number Libraries oL
3.5 Encryption/Authentication Performance
3.5.1 Comparison of DES Operating in Different Cipher Modes
3.5.2 Encryption and One-Way Hashing Performance within a Process . .

3.5.3 UDP Throughput Performance of Encryption Algorithms

4 Implementation of Secure PVM

4.1 Parallel Virtual Machine (PVM)
4.2 PVM Extensions for Enhanced Security
4.2.1 Starting Slave Pvmdso
4.2.2 Key Distribution
423 PVMmessageso
4.2.4 Security Options available to the PVM user
4.2.5 Authentication L o
4.2.6 Encryption
4.2.7 PVM Key Generation
43 PVM and Kerberos
4.4 Performance L L e
4.4.1 Comparison of Pvind Slave Startup Times

4.4.2 Comparison of PVM Throughput

5 Summary and Recommendations

5.1 Research Summary Lo

vi

71

73

74

74

76

77

78

81

83

85

87

88

88

89

89

91

93

5.2 Limitations
5.3 Future Work

5.4 Legal Issues

vii

List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

Overview of DES o0 oo 10
Authentication protocol in Kerberos. 0000, 28
An X509 certificate oL oL 34
DES performance in different cipher modes 71
Encryption/Hashing performance within a process 72
UDP throughput performance for different encryption algorithms 73
Partial anatomy of PVM o oo 75
Timeline of key-exchange operation 80
PVM Message header 82
Pvmd-Pvmd packet header for secare PVM 000, 82
Time taken to start 1-8 slave pvmnds oo 90
Comparison of throughput performance between two PVM hosts 92

viii

List of Tables

3.1 Estimates for a brute-force attack on symmetric cryptosystems

4.1 FEncoding formats used in libpvm o o000 o oL

4.2 Results from timing.co o oL oo

b6

Chapter 1

Introduction

The prevalence of computers and computer networks has greatly influenced the way
people work. Many computing environments now exist in which frequent and substantial
parts of the activities involve communication among computers linked by open networks.
Most of the networks (and internetworks) used for these activities are open in the sense
that they are vulnerable to eavesdropping and interference from unauthorized intruders.
Depending on the sensitivity of the information and the type of tampering, the potential
damage can be significant.

Cryptography has been known for centuries and used by the military to protect sensitive
or secret information from unauthorized personnel while the information was delivered via
unsecured channels. Encryption permits the establishment of a data channel that is less
open than the underlying internetwork, by arranging that only authorized parties can create,
inspect, and/or modify the data. Only those who possess the correct decryption key can
decipher the encrypted information. Cryptography can also be used to protect the integrity
of data by a process called message authentication and verification. This process involves
the calculation of a message checksum, which is then sent along with the message to a

recipient. The recipient can recompute the checksum and verify that the message was not

modified in transit.

Currently there are two dominant cryptographic techniques: secret-key cryptography
and public-key cryptography (§ 2.1). Security services based on these mechanisms assume
keys to be distributed prior to secure communication. In secret-key cryptography, a secret
key is established and shared between the two parties, and the same key is used to encrypt
and decrypt messages. If the two parties are in different physical locations, they must trust
a courier, or some transmission system to establish the initial key and trust this third-party
not to disclose the secret key they are communicating. In a public-key system, a user makes
use of a pair of keys: a public key and a private key. The two keys are uniquely related so
that the public key of a user can be made public without revealing any information about
the private key. The private key of a user is usable only by its owner. Messages encrypted
with the private key can only be decrypted with the public key and vice versa. Since the
private key is not shared, public-key cryptography makes key management easier, allowing
two parties to establish a secure channel without having to share a secret.

In distributed computing, a collection of computers connected by a network functions as
a single entity in solving computational problems. By connecting several machines together,
one has access to more compute power, memory and I/O bandwidth. One of the biggest
advantages of distributed computing is the low cost relative to the computational power
available, since the computers and network already exist at a typical university or industrial
site; and much of the processor power goes unused?.

Current distributed computing systems, for all their virtues, make it difficult to “re-
liably” limit access to sensitive data. Hosts often unselectively broadcast data to distant
and unpredictable places, remote login facilities unintentionally open access to intruders,
and distributed file systems often assume that all machines to which they provide service
are trustworthy. To reduce these risks, cryptographic techniques can be used to limit data

access while still taking advantage of insecure networks and services.

! Especially at night and weekends.

1.1 Objectives and Significance

Network security on the continually expanding Internet is a topic of increasing impor-
tance. The concomitant security problems in the Internet, coupled with the wide range
of services and applications it supports, makes IP-based? networks a good choice for un-
derstanding and exploring network security issues. This research focusses on developing
and evaluating various alternatives for adding security to distributed parallel applications
that execute over unsecured IP-based networks. Specifically, this research addresses the

following questions.
1. What UNIX? software systems are available for inter-host user authentication?

2. What encryption mechanisms (public and secret key) are suited to distributed appli-

cations?
3. What mechanisms exist for key management in distributed applications?
4. How does one achieve data integrity in a message-passing distributed application?
5. What is the effect of encryption/authentication on application performance?

In order to get a better understanding of the design tradeofls involved in developing
secure distributed applications, this research focussed on extending the Parallel Virtual
Machine (PVM) to include support for cryptographic authentication, data integrity, and
encryption. PVM?* has become the de facto standard for distributed computing worldwide
[ZG95]. PVM is a message passing system that allows a collection of heterogeneous comput-
ers on a network function like a distributed operating system. PVM supplies the functions
to automatically start up tasks on the logical distributed-memory computer and allows the

tasks to communicate and synchronize with each other.

2IP: Internet Protocol [Pos81].
#UNIX is a trademark of X/Open.
*Developed at the Oak Ridge National Lab (ORNL) [GBD194]

1.2 Methods and Assumptions

Currently, PVM depends on UNIX and the standard TCP /IP protocol suite for security.
For remote process initiation, the user either has to send his password on the remote host
in clear-text or make the remote host “trust” the host running the master pvmd (using
rsh). Both these approaches have concomitant risks. Trusted hosts can be impersonated
by exploiting existing vulnerabilities in IP-based networks. These vulnerabilities include
attacks based on IP source routing, DNS' database corruption and TCP sequence number
prediction [Bel89] [CERT96a]. Also, an established session can be intercepted and co-opted
by an attacker by IP-splicing® attacks [Neu95] [Jon95].

In secure PVM, the above risks can be reduced by using existing mechanisms like Ker-
beros (§ 2.3.1) or new software like SSH or STEL (§ 2.4.2). The user could require that the
set of machines used in his/her PVM application use Kerberos for user authentication and
for rsh services used in spawning slave PVM daemons. Instead of Kerberos, SSH or STEL
can also be used to securely spawn processes on remote hosts.

Once the pvmds are up and running, applications use the PVM infrastructure to ex-
change messages between PVM tasks running on different hosts in the virtual machine.
This communication is insecure in the sense that an attacker can inspect/modify the con-
tents of these messages. PVM’s security is enhanced by adding cryptographic extensions
to facilitate authentication and encryplion of PVM messages. Authentication ensures that
no unauthorized party can impersonate a PVM process as if it were part of the virtual
machine. Encryption ensures that no unauthorized party can discover the contents of PVM
messages.

The PVM slave startup protocol is extended to include a Diffie-Hellman (§ 2.1.2.2) key
exchange. By means of this key exchange, the master pvmd can distribute a secret PVM

session key to all the slaves. Once all the pvmds have access to this PVM session key, all

®Use of one-time passwords do not hinder this attack, since the connection is hijacked after the user
authentication phase.

messages sent between PVM hosts can be encrypted and authenticated. The PVM user can
either choose to encrypt all messages while starting PVM or selectively enable encryption
for essential messages.

This study is based on several assumptions. Those that are not discussed later are

presented here.

e Publicly available implementations of encryption algorithms like DES, IDEA, RC4
and one-way hash functions like MD5 are used in this research. It is assumed that

these implementations are correct.

e This research is concerned with inter-host security issues. Intra-hosts security issues
like the reliability of the operating system services are not addressed in this research.
This is because intra-host security can be subverted by a malicious user with super-

user privileges on the machine.

e This research does not address the issue of authenticating a user to a remote host.
User authentication mechanisms like the Kerberos or DCE infrastructure are assumed

to be available on the PVM hosts.

1.3 Thesis Overview

The next chapter surveys related literature in the areas of cryptography, key manage-
ment, and network security. Chapter 3 discusses various issues involved in the design of
a cryptographic application. In Chapter 4, the implementation and performance of secure
PVM is described. The last chapter summarizes work done in this research and identifies

areas were further studies would be beneficial.

Chapter 2

Survey of Related Work

It is possible to include secure communication at various levels in a communication pro-
tocol hierarchy. At the physical layer, security can be achieved by various non-cryptographic
techniques that prevent tampering with the communication medium itself. At the data link
layer, it is possible to encrypt all traflic on each link using a key which is shared by all
nodes directly connected to that link. This is called link encryption; it protects against in-
truders from outside the community that shares that data link, but it does not distinguish
authorized parties within the community. When a communication path is formed over a
network consisting of multiple data links, link encryption allows intrusion by members of
the “trusted” community of every data link traversed by the path.

A natural place for implementing end-to-end encryption policies is the network layer,
since there is direct node-to-node addressing of packets. Transport-layer encryption dif-
fers from network-layer encryption primarily in its ability to provide a finer granularity of
protection. However, both network and transport layer encryption are subject to network
“discontinuities” due to the use of firewalls and protocol translators. This perhaps suggests
that real end-to-end encryption can be accomplished only at the higher layers. Also, when

the underlying infrastructure does not provide adequate security, application-layer encryp-

tion often becomes the only possible solution. Application-layer security is the focus of this
research.

The first two sections look at various aspects of cryptography and authentication. The
remaining sections review related work: protocols and software systems that provide au-
thentication, integrity and confidentiality services at different layers of the standard network

hierarchy.

2.1 Cryptography

Cryptography, as applied to data communications, is a matter of taking the original
message and producing an encrypted version by using a special piece of information known
only to the sender and receiver. The original message is called the plaintext; the special
information is called the key, and the resulting message is called the ciphertexzt. The process
for producing ciphertext is called encryption. The reverse of encryption is called decryption.
Encryption (and decryption) can be performed by either computer software or hardware.
Common approaches to encryption include writing the algorithm on a disk for execution
by a CPU; placing it in ROM or PROM for execution by a microprocessor; and isolating

storage and execution in a computer peripheral device (e.g., PCMCIA card).

2.1.1 Secret Key Encryption

In conventional cryptographic systems, the sender and receiver know a single key in
common and keep this key secret from everybody else. Such an arrangement is called a secret
(or symmetric) key cryptosystem. Mathematically, a secret-key cryptosystem consists of an
encryption system E and a decryption system D. The encryption system E is a collection
of functions Fg, indexed by keys K, mapping some set of plaintexts P to some set of
ciphertexts C. Similarly the decryption system D is a collection of functions Dg such that

Dg(FEg(P)) = P for every plaintext P. That is, successful decryption of ciphertext into

plaintext is accomplished using the same key (index) as was used for the corresponding
encryption of plaintext into ciphertext.

One of the biggest problems that cryptosystems have to face is the secure distribution of
the secret encryption keys. In order to be useful, cryptosystems need to be able to securely
disseminate the necessary encryption keys to all parties who need them. In many systems
that use secret-key cryptography, the keys need to be distributed by manual means that are
outside the normal functioning of the system. This approach is not very scalable nor flexible
and limits the use of secret-key cryptosystems. Public-key cryptography (see Section 2.1.2)
offers an elegant solution to this problem.

Schneier [Sch96], and Stallings [Sta95] survey a number of secret-key cryptographic
algorithms. The following sub-sections deal with two of the most popular ones, DES and

IDEA.

2.1.1.1 DES

The best known example of a secret key cryptosystem is the U.S. Data Encryption
Standard (DES) [US 77]. DES was designed by IBM in the early 1970s in response to a
National Bureau of Standards' request. The key length in DES is 56 bits?.

DES operates on a 64-bit block of plaintext. First, the 64-bit plaintext block passes
through an initial permutation that rearranges the bits to produce a permuted input. The
block is then split into a left half and a right half, each 32 bits long. This is followed by
sixteen rounds of identical operations (called Function f), in which the data are combined
with the subkeys. After the sixteenth round, the left and right halves are joined and passed
through a final permutation (the inverse of the initial permutation) to produce the 64-bit
ciphertext.

In each round, the key bits are shifted and then 48-bit subkeys are selected from the 56

'Now known as the National Institute of Standards and Technology (NIST).
?The function expects a 64 bit key as input. Every eighth bit is used for parity checking and is ignored.

bits of the key. The right half of the data block is expanded to 48 bits via an expansion
permutation, combined with 48 bits of a shifted and permuted key via an ezclusive-OR,
substituted for 32 new bits using a substitution algorithm and then permuted again. These
four functions make the Function f. The output of Function f is then combined with the
left half via another exclusive-OR. The result of these operations becomes the new right
half; the old right half becomes the new left half. These operations are repeated 16 times,
making 16 rounds of DES (see Figure 2.1).

If B; is the result of the #-th iteration, L; and R; are the left and right halves of B;, K;
is the 48-bit key for round i, £ is the function that does all the substituting/permuting and
XOR-ing with the key, then a round looks like:

L = R,
R; L; ® f(Ri—1, K;)

The process of decryption with DES is essentially the same as the encryption process. The

ciphertext is input to the DES algorithm, but the subkeys K; are used in reverse order.

Ever since the adoption of DES as a federal standard, lingering concerns have existed
against its short key-length (56-bits). In 1981, Diffie [Sch96] estimated that a special-
purpose DES-cracking machine costing $20 million could recover a key in two days based
on “brute-force” search. In 1993, Wiener [Wie93] presented a design for an “economical”
DES-cracker costing $1,000,000 that will find any DES key in about 7 hours, with an average
search taking 3.5 hours.

Given the potential vulnerability of DES to brute force attacks, there has been con-
siderable interest in finding more “secure” alternatives. One of these approaches is to use
multiple encryption with DES, using multiple number of keys. Tuchman [Tuc79] proposed
a triple encryption method that uses of only two keys®. The function follows an encrypt-

decrypt-encrypt (EDE) sequence:

?There are many variants to the 3-DES algorithm, including using 3 distinct keys 168-bit key.

v
v

IP: Initid Permutation

v
Lo "
&) O — .
V”W?” - 777;
L1=Ry Ri=Lg @ (Ro K1)
4
— .y
L,=Ry Ry=L, @ iRy, Ky)
; v
Lis=Ryy Ris=L14 @ Ry Ky)
)4
:,2 ffi -
- .y
Rig=L1s O f(Ri5, K1g) R
|
1p-1

Figure 2.1: Overview of DES

Source: [Sch96]

10

ciphertext = Ex,| Dg,| Ex,| plaintext]]]

There is no cryptographic significance to the use of decryption for the second stage. How-
ever, this approach allows users to decrypt data encrypted by users of the “single” DES
algorithm (by making K7 = K3 in the above equation), thereby preserving the existing
investment in DES software and equipment.

It is expected that 3-DES will soon become a de-facto standard for secret-key encryption.
It has already been adopted for use in the key management standards like ANS X9.17 and

for Privacy Enhanced Mail (PEM)?.

2.1.1.2 IDEA

International Data Encryption Algorithm (IDEA) was developed by Xuejia Lai and
James Massey of the Swiss Federal Institute of Technology in 1990. It is one of a number
of conventional algorithms proposed in recent years to replace DES. It uses a 128-bit key
to encrypt data in blocks of 64 bits.

The design philosophy behind the algorithm is one of “mixing operations from three

different algebraic groups” [Sch96]. IDEA uses three operations,
e Exclusive-OR (XOR)
e Addition modulo 2'¢ |, and
e Multiplication modulo 26 + 1.

The IDEA algorithm consists of eight rounds, followed by a final transformation func-
tion. Each round makes use of six 16-bit sub-keys, whereas the final transformation uses
four sub-keys, for a total of fifty-two sub-keys. These fifty-two sub-keys are derived from
the original 128-bit key. For encryption, first the 64-bit input is broken into four 16-bit sub-

blocks. These four sub-blocks become the input to the first round of the algorithm. In each

*ANS X9.17: American National Standard for Financial Institution Key Management.

11

round, the four sub-blocks are XOR-ed, added and multiplied with one another and with six
16-bit sub-keys. Between rounds, the second and third sub-blocks are swapped. Finally, the
four sub-blocks are combined with four sub-keys in an output transformation and a 64-bit
ciphertext is produced. Decryption is similar to encryption, except that the sub-keys are
reversed and are slightly different. The decryption sub-keys are either the additive or mul-
tiplicative inverses of the encryption sub-keys. [LM91] describes the encryption/decryption
mechanism in detail.

IDEA is patented in Europe and United States, though no license fee is required for

non-comimercial use.

2.1.1.3 Cipher Types and Modes

There are two basic types of symmetric (secret-key) algorithms: block ciphers and stream
ciphers. Block ciphers operate on blocks of plaintext and ciphertext (usually 64 bits but
sometimes longer). Since most messages do not divide cleanly into 64-bit (or bigger) blocks,
the last block has to be padded, such that the total length of the message becomes a multiple
of the block-size. Block ciphers are generally used to encrypt “static” entities like files, or
data in message-oriented communication protocols (e.g., PVM messages). Stream ciphers
operate on streams of plaintext and ciphertext one bit or byte at a time (e.g., encryption
of a telnet session). With a block cipher, the same plaintext block will always encrypt to
the same ciphertext block, using the same key. With a stream cipher, the same plaintext
bit or byte will encrypt to a different bit or byte each time it is encrypted.

A cryptographic mode usually combines the basic cipher, some sort of feedback, and
some simple operations. FIPS-81 [US 80] specifies four modes of operations to cover all the
possible applications of encryption for which DES can be used. However, these “operation

modes” can apply to any secret-key algorithm.
Electronic Codebook (ECB) Mode
In this mode, each block of plaintext is encrypted into a block of ciphertext. It is called

12

‘electronic codebook’ because, for a given key, there is a unique ciphertext for every 64-bit
block of plaintext. This makes it theoretically possible to compile a code book of plaintexts
and corresponding ciphertexts. For a message longer than 64-bits, the message is broken
into 64-bit blocks, padding the last block if necessary.

Since each plaintext block is encrypted separately, the ECB mode is ideal for “random-
access” file operations. Encryption/decryption on different blocks can be carried out in
parallel, since there are no dependencies between different blocks of the plaintext/ciphertext.
Bit errors in the ciphertext, when decrypted, will cause the entire plaintext block to be
decrypted incorrectly, but will not affect the remainder of the plaintext. However, if the
same plaintext block appears more than once in the message, the corresponding ciphertext
generated by encryption is always the same. This makes the ECB mode of encryption less
secure for highly structured long messages, since it may be possible for a cryptanalyst to

exploit these regularities.

Cipher Block Chaining (CBC) Mode

Chaining adds a feedback mechanism to a block cipher. The results of the encryption
of the previous blocks are fed into the encryption of the current block, thereby making each
ciphertext block dependent on all the previous plaintext blocks in addition to the current
plaintext block.

In CBC mode, the plaintext is XOR-ed with the previous ciphertext block before it is
encrypted. After a plaintext block (P;) is encrypted, the resulting ciphertext is stored in
a feedback register to be used as an input for encrypting the next plaintext block. For de-
cryption, a ciphertext block(C;) is decrypted normally and also saved in a feedback register.
After the next block is decrypted, it is XOR-ed with the results of the feedback register.

This operation can be mathematically represented as follows:
Encryption: C; = Ex(P; & Ci—1)

Decryption: P; = Ci_1 @ Dr(C;)

13

To produce the first block of ciphertext, an initialization vector (IV)is XOR-ed with the
first block of plaintext. On decryption, the IV is XOR-ed with the output of the decryption
algorithm to recover the first block of plaintext. With the addition of the IV, identical
plaintext messages encrypt to different ciphertext messages. The IV does not have to be
unique or kept secret; it can be transmitted in the clear with the ciphertext. According to
Schneier, “ while the IV should be unique for each message encrypted with the same key, it
is not an absolute requirement” [Sch96].

The CBC mode is useful for encrypting files and long messages. In the CBC mode, a
single bit error in the ciphertext affects one block and one bit of the recovered plaintext.
The decrypted block corresponding to the block containing the error is completely garbled.
The next block has a 1-bit error in the same bit position as the error. Subsequent blocks

are not affected by the error, so CBC is self-recovering.

Cipher Feedback (CFB) Mode

With CBC mode, encryption cannot begin until a complete block of data is received.
This limits the use of CBC mode encryption/decryption for data-streams. To resolve this
issue, block ciphers can be implemented as self-synchronizing stream ciphers®; this is called
the cipher-feedback mode.

A block algorithm in CFB mode operates on a queue the size of the input block. Initially,
the queue is filled with an initialization vector (1V), as in CBC mode. The queue is encrypted
and the left-most eight bits of the result are XOR-ed with the first 8-bit® character of the
plaintext, to become the first 8-bit character of the ciphertext. The same eight bits are
also moved to the right-most eight bit positions of the queue and all the other bits move
eight positions to the left. The eight left-most bits are discarded. Then the next plaintext

character is encrypted in the same manner. Decryption is the reverse of this process. For

In a self-synchronizing stream cipher, each keystream bit is a function of a fixed number of previous
ciphertext bits.
6The most commonly used size of each unit for CFB mode is 8 bits.

14

both encryption and decryption, the block algorithm is used in its encryption mode.
Encryption: C; = P; & Ex(Ci_1)

Decryption: P, =C; & Er(Ci—1)

The IV in CFB mode should be unique (unlike in CBC mode where the IV should be
unique but does not have to be). If the IV is not unique, a cryptanalyst can recover the
corresponding plaintext. The IV must be changed with every message.

In n-bit CFB, a single bit error in the ciphertext will affect the decryption of the cur-
rent and following m/n — 1 blocks, where m is the block size. 8-bit CFB is generally the
mode of choice for encrypting streams of characters when each character has to be treated

individually, as in a link between a terminal and a host.
Output Feedback (OFB) Mode

Output-feedback (OFB) mode is a method of running a block cipher as a synchronous
stream cipher”. It is similar to the CFB mode, except that the n bits of the previous output
block are moved into the right-most positions of the queue. On both the encryption and
decryption sides, the block algorithm is used in its encryption mode. Since the feedback
mechanism is independent of both the plaintext and the ciphertext streams, the OFB mode
is sometimes referred to as internal feedback. The OFB mode IV should be unique but does
not have to be secret.

If nis the block size of the algorithm and 5; is the state (which is independent of either

the plaintext or the ciphertext), n-bit OFB works as follows:
Encryption: C; =P & S; Si= Ex(Ci—1)

Decryption: Pi=C;&S5; 8= Ex(Ci—q)

In OFB mode, a single-bit error in the ciphertext causes a single-bit error in the recov-

ered plaintext. This makes OFB useful for digitized analog transmissions (like video/voice),

"In a synchronous stream cipher, the keystream is generated independent of the message stream [Sch96].

15

where the occasional single-bit error can be tolerated. Since the OFB mode relies on syn-
chronization between the shift registers at the encryption and decryption end for correct
functioning, a mechanism to detect and correct synchronization loss should exist. Analysis
of OFB mode [DP83] has demonstrated that OFB mode should be used only when the

feedback size is the same as the block size.

2.1.2 Public Key Encryption

The concept of public-key cryptography was invented by Whitfield Diffie and Martin
Hellman [DH76], and independently by Ralph Merkle [Mer78]. They demonstrated that a
message can be encrypted using one key and decrypted by another. The two keys are related
in such a way that a knowledge of one key does not make it possible to figure out the other
key. This permits one key, the public key, to be widely known®, while the corresponding
private key is known only to a single user. Mathematically, public key cryptography is
based on trap-door one-way functions. A {rap-door one-way function is a special type of
one-way function that is easy to compute in one direction and hard to compute in the other
direction unless certain trapdoor information is known.

RSA? and Diffie-Hellman are two well-known public key cryptosystems. The following

subsections describes the functioning of these two cryptosystems.

2.1.2.1 RSA

The best known example of a public key cryptosystem is RSA. RSA was developed at
MIT in 1977 by Ronald Rivest, Adi Shamir and Len Adelman [RSA78]. The public and
private keys are functions of a pair of large prime numbers.

To generate the key-pair, two large prime numbers!?, p and ¢, are chosen. The product,

8There remains the problem of verifying the authenticity of the public key.

°The name is derived from the initials of the inventors.

19The two primes, p and ¢, which compose the modulus, should be of roughly equal length; thus if one
chooses to use a 512-bit modulus, the primes should each have length approximately 256 bits.

16

n = pq is computed. Then the encryption key, e, where e and ((p — 1) * (¢ — 1)) are
relatively prime, is randomly chosen. In the next phase, Euclid’s algorithm for greatest

common divisor (gcd) calculation is used to compute the decryption key, d, such that

exd=1(mod(p—1)*(qg—1))
That is
’ d=et (mod(p—1)x(qg—1))
The numbers e and n are the public key; the number d is the private key. Once the key-pair
is computed, the two primes, p and ¢ are no longer needed.
To encrypt a message m, it is first divided into numerical blocks such that each numerical
block has a unique representation modulo n. The encrypted message, ¢, will be made up of

similarly sized message blocks, ¢;, of about the same length. The encryption formula is :

To decrypt a message, each encrypted block ¢; is taken and m; is computed:

m; = ¢;* (mod n)

RSA gets its security from the difficulty of factoring large numbers'!.

Recovering the
plaintext from one of the keys and the ciphertext is conjectured to be equivalent to factoring
the product of the two prime numbers.

RSA is about 1000 times slower than DES in hardware and in software it is about

100 times slower. The RSA algorithm is patented in the United States, but not in other

countries. The U.S. patent will expire in September 2000.

2.1.2.2 Diffie-Hellman

The Diffie-Hellman (DH) key exchange was the first published public-key algorithm

[DH76] . The DH key exchange provides a mechanism by which two parties can negotiate

" Currently, large numbers in public key cryptography refer to integers which are 512 bits or longer in
size.

17

a secret session key, without fear of eavesdroppers. This system gets its security from the
difficulty of calculating discrete logarithms in a finite field, as compared with the ease of
calculating exponentiation in the same field.

In the DH key exchange, there are two publicly known numbers: a prime number ¢

t12 of q. Two users i and j

and an integer a (called the generator) that is a primitive roo
do a DH key exchange as follows. User i selects a random integer X; < ¢ and computes
Y; = a®imod ¢. Similarly, user j independently selects a random number X; < ¢, and

X

computes Y; = a”vmod q. Fach side keeps the X value private and makes the Y value

available publicly to the other side. Now user i computes the key as K = (Yj)Ximod g and
X

user j computes the key as K = (Y;)*mod ¢. By the rules of modular arithmetic, these

XiXimod g). This “shared” key can be used

two calculations produce identical results (ie. a
for encrypting messages between the two parties using conventional secret key encryption.
The Diffie-Hellman key exchange algorithm is patented in the United States. The U.S.

patent will expire in April 1997.

2.1.2.3 Hybrid Cryptosystems

A misconception about public-key encryption is that it has made secret key encryption
obsolete. It should be noted that secret key cryptosystems are much faster than any known
public key cryptosystem when encrypting large bodies of plaintext. According to Whitfield
Diffie [Dif88], “The restriction of public-key cryptography to key management and signature
applications is almost universally accepted”. A judicious combination of the two approaches
is often adopted to achieve the performance of the former with the flexibility of the latter.
Typically, public-key encryption is used to exchange a secret key. The subsequent encryption

of data using this key is done with a secret-key algorithm.

12 A primitive root of a prime number p is one whose powers generate all the integers from 1 to p - 1.

18

2.1.3 Secure One-Way Hash Functions

A one-way hash function, H(M), operates on an arbitrary length message M to generate

a fixed-length hash value, h. It has the following properties.
e Given M, it is easy to compute h.
e It is irreversible. Given #, it is hard to compute M such that H(M) = h.

e It is collision-resistant. It is hard to find two random messages, M and M’, such that

H(M)=H(M".

These properties make one-way hash functions useful mechanisms for authenticating mes-
sages and for ensuring data integrity.

MD5 and SHA are two well-known one-way hash functions. They are both based on
MD4 [Riv92a]. MD4 is a block-chained digest algorithm, computed over the data in phases
of 512-byte blocks. The first block is processed with an initial seed, resulting in a digest
that becomes the seed for the next block. When the last block is computed, its digest is the
digest for the entire stream. This chained seeding prohibits the parallel processing of the
data blocks. MD4, while not broken yet, has been shown to be “potentially” vulnerable by

Bosselaers and Boer [dBB92], and Biham [Bih93].

2.1.3.1 MDS5

The MD5 message digest algorithm [Riv92b] is an extension of the MD4 [Riv92a]
message-digest algorithm. According to its inventor, Ronald Rivest, “MD35 is slightly slower
than MD4, but is more conservative in design. MD5 was designed because it was felt that
MD4 was perhaps being adopted for use more quickly than justified by the existing critical
review; because MD4 was designed to be exceptionally fast, it is al the edge in terms of
risking successful cryptanalytic attack. MD5 backs off a bit, giving up a little in speed for

a much greater likelihood of ultimate security”.

19

MD5 processes the input data of arbitrary length (less than 254 bytes) in 512-bit blocks,
divided into sixteen 32-bit sub-blocks and produces as output a 128-bit fingerprint or mes-
sage digest of the input First, the message is padded so that its length is 64 bits short of
being a multiple of 512. Then, a 64-bit representation of the message’s length (before the
addition of the padding bits) is appended to the result to make the length an exact multiple
of 512. The main loop of the MD5 algorithm has four rounds'®, with each round using a
different operation 16 times. Fach operation performs a non-linear function based on XOR,
AND, OR and NOT operators. This loop gets executed for as many 512-bit blocks as are in
the message. The output of the algorithm is a set of four 32-bit blocks, which concatenate

to form a single 128-bit message digest.

2.1.3.2 SHA

NIST, along with the NSA, designed the Secure Hash Algorithm (SHA) [NIS93] for use
with the Digital Signature Standard [NIS92]. Like MD5, SHA is very similar to MD4.

SHA works on messages of length less than 2%* bytes as input and produces a 160-bit
message digest. First, the message is padded to make it a multiple of 512 bits long. For
padding, it uses the same mechanism employed as in MD5. The main loop of the SHA
algorithm has four rounds of 20 operations each!®. It processes the message 512 bits at a
time and continues for as many 512-bit blocks as are in the message.

Since SHA produces a 160-bit hash, it is more resistant to brute-force attacks than 128-
bit hash functions like MD5. A flaw was apparently found in the original specification of
SHA and a newer specification has been released. The newer version is not inter-operable

with the older version.

1¥*MD4 had three rounds.

M“MD5 has four rounds of 16 operations each.

20

2.2 Authentication

In order to get access to services in a distributed environment, entities (users and hosts)
should be able to prove that they are who they “claim” to be — i.e., authenticate themselves.
The authentication process usually consists of identification and verification of the entity’s
claim [WL92]. Identification is the process whereby an entity claims a certain identity, while
verification is the process whereby that claim is checked. Three ways by which users and

hosts can be authenticated are:

¢ By what you are; identifying an individual by some of his biological characteristics,

€.g., a retinal scan or a fingerprint.

e By what you have; proving one’s identity by presenting a physical credential, e.g., a

credit card.

e By what you know; identifying an individual by something he (and only he) knows,

e.g., a login password.

Though each of these techniques have their weaknesses, authentication procedures can be

strengthened by combining them.

2.2.1 User-Host Authentication

The authentication method most widely used in network environments today consists
of asking users to prove their identity by demonstrating knowledge of a secret they know,
typically a password. Since the host just has to be able to distinguish between valid and
invalid passwords, it stores one-way functions of the passwords instead of the password itself
for “enhanced” security. However, since the passwords are transmitted in the clear over the
network when a user attempts to log in to a remote host, this authentication mechanism
becomes vulnerable to passive attacks [CERT94]. A passive attack relies on being able to

passively monitor information (eavesdrop) being sent between other parties. Moreover, such

21

systems are also vulnerable to off-line dictionary attacks in which the attacker attempts to
guess the hashed password by comparing it with a compiled dictionary of hashed strings
(obtained by using the same one-way hash function) corresponding to commonly used pass-

words.

2.2.1.1 One-time passwords

In a one-time password system, the user’s secret password never crosses the network
during login, thereby eliminating the risk of “eavesdropping”. Since one-time passwords do
not get re-used for authenticating future sessions, they are useless to an eavesdropper.

S/KEY' is a one-time password system which uses secure one-way hash functions to
generate a finite sequence of single-use passwords from a single secret known only to the
user. The security of this system is based on the premise that it is computationally infeasible
to invert one-way hash functions. The functioning of the S/KEY authentication system is
discussed in detail in Section 2.4.4.

Time Based Cards (e.g., SecurID%) offer another mechanism to implement one-time
password systems. Such cards have an on-board clock. To gain access to a protected
resource, a user types his Personal Identification Number (PIN), followed by the current
access code displayed on the card. The access code is the output of a function of the
current time. The host can compute the proper value that the card should be displaying
and therefore can determine whether or not a legitimate card is being used. Such systems
require the client and server to share the same notion of time.

Challenge-Response cards are smart cards that contain not only memory, but also pro-
cessing capabilities. They are typically initialized with a secret key which is used to encrypt
challenges to the card. In order to prove that the user has the correct card, the system

sends a random number to the card and expects the card to algorithmically transform the

13S/KEY is a trademark of Bellcore.

16QecurlD is a trademark of Security Dynamics.

22

number into a response number. The user keys in this response. The system performing
the authentication can determine if the card has the correct key by checking if the response

keyed-in matches the expected response.

2.2.1.2 Trusted Third-Parties

In this model, the host does not rely solely on the credentials supplied by the user seeking
authentication. Also, the secret key of the user never crosses the network. Instead, both
parties rely on a third entity, called a Key Distribution Center (KDC), to vouch for each
other’s identity. The KDC accomplishes this by sharing a secret key with each entity and
is able to verify the identity of the entity based on this shared knowledge (authentication

using trusted third-party systems are discussed in detail in Section 2.3).

2.2.2 Host-Host Authentication

The dominant form of host-to-host authentication on the Internet today relies on the
network itself to provide authentication information. Network authentication comes in
two flavors, address-based and name-based. For the former, the source’s IP address is
used as an authenticator. This approach is prone to attacks where the source address is
modified by the attacker (e.g., TCP sequence number guessing attacks [Bel89]). Name-
based authentication is even weaker since it requires a host to trust the the network’s name
service infrastructure. By corrupting the name server’s data, an attacker will be able to
subvert name-based authentication mechanisms [CERT96b].

Cryptographic techniques provide a stronger basis for host-host authentication. They
rely on the possession of some secret key. Since it is not feasible for each host to store keys for
every other host (requiring O(n?) keys), a commonly adopted solution is to have a trusted
third-party. In a secret-key based cryptographic system, a Key Distribution Center (KDC)
shares a secret key with each host and can act as an intermediary in the authentication

process. In a public-key based cryptographic system, a Certificate Distribution Center

23

(CDC) or a Directory Service (e.g., X.500) can reliably distribute the host’s authentic

public key. Key distribution mechanisms are surveyed in detail in Section 2.3.

2.2.3 Message Authentication

Two mechanisms for achieving authentication of messages are Message Authentication

Codes and Digital Signatures.

2.2.3.1 Message Authentication Codes (M ACs)

A MAC is a key-dependent mechanism by means of which one can achieve authenticity
without secrecy. Unlike a data checksum which is designed to catch errors due to “noise” in
the communication channel, a MAC is a cryptographic checksum intended to resist forgery.
This method requires the two parties to share a secret-key. It can either be based on a
symmetric cryptosystem or on one-way hash functions.

The DES-CBC-MAC, as defined in FIPS-113 [US 85], is an example of a MAC based
on symmetric cryptosystems. The 64-bit residue resulting from the application of the DES-
CBC algorithm on the message is used as the message authentication code. The DES-residue
is sent to the receiver along with the message. The recipient encrypts the message using the
same shared-key and checks if the resulting residue corresponds to the one received from
the sender.

A one-way hash function, along with a shared-secret key, can also be used as a mes-
sage authentication code. This method takes advantage of a one-way hash function’s
collision /inversion-resistant properties and combines it with the knowledge of a secret key
to produce a message authentication code. An example of this method would be take an

MD5 hash of the concatenation of the secret key and data.

24

2.2.3.2 Digital Signatures

A digital signature [NIS92] is an electronic analogue of a written signature in that the
digital signature can be used in proving to the recipient that the message was, in fact,
signed by the originator. They can also be used to detect unauthorized modifications to
data. Digital signatures make use of public-key cryptography. The private key of the sender
is used to generate the signature. The signature is verified by the recipient by using the
corresponding public key of the sender.

Since public key algorithms are often too inefficient to sign long messages, a one-way
hash function is used in the signature generation process to obtain a condensed version
of the data (called a message digest). The message digest is then input to the public-key
algorithm to generate the digital signature. The digital signature is sent to the recipient
along with the message. The recipient generates a hash of the message using the same hash
function as the sender and verifies the signature using the sender’s public key.

The recipient of the signed data can also use a digital signature in proving to a third
party that the signature was in fact generated by the signatory. This feature is known as

non-repudiation.

2.3 Key Distribution Systems

Security services based on cryptographic mechanisms assume keys to be distributed
prior to secure communications. The secure management of these keys is one of the most
critical elements when integrating cryptographic functions into a system, since any security
concept will be ineffective if the key management is weak. Many key-distribution systems

also provide authentication services.

25

2.3.1 Kerberos

Kerberos [SNS88] is a secret-key based system for providing authentication and key
distribution in a networked environment. It was originally designed at MIT as a part of
Project Athena. The basic protocol is derived from one originally proposed by Needham
and Schroeder[NS78] [DS81]. As use of Kerberos spread to other environments, changes
were needed to support new policies and patterns of use [BM90]. To address these needs,
the design of Version 5 of Kerberos (V5) began in 1989 [KNT94]. Though Kerberos Version
4 (V4) still runs at many sites, V5 [KN93] is considered to be the standard Kerberos.

Kerberos allows a process (a client) running on behalf of a principal (a user or service) to
prove its identity to a verifier(an application server) without sending data across the network
that might allow an attacker or verifier to subsequently impersonate the principal. This
is accomplished without relying on authentication by the host operating system, without
basing trust on host addresses, without requiring the physical security of all the hosts on the
network, and under the assumption that packets traveling along the network can be read,
modified and inserted at will. Kerberos optionally provides integrity and confidentiality for
data sent between the client and the server!”.

The Kerberos implementation consists of one or more authentication servers running on
physically secure hosts. The authentication servers maintain a database of principals (i.e.,
users and servers) and their secret keys. Code libraries provide encryption and implement
the Kerberos protocol. In order to add authentication to its transactions, a typical network
application adds calls to the Kerberos library, which results in the transmission of the
necessary messages to achieve authentication.

The authentication process proceeds as follows: A client sends a request to the authen-
tication server (AS) requesting credentials for a given server. The AS responds with these

credentials, encrypted in the client’s key. The credentials consist of (1) a ticket for the server

1"Many applications use Kerberos’s function only upon the initiation of a stream-based network connection
and assume the absence of any “hijackers” who might subvert such a connection.

26

and (2) a temporary encryption key (often called a session key). The client transmits the
ticket (which contains the client’s identity and a copy of the session key, all encrypted in
the server’s key) to the server. The session key (now shared by the client and server) is
used to authenticate the client, and may optionally be used to authenticate the server. It
may also be used to encrypt further communication between the two parties or to exchange
a separate sub-session key to be used to encrypt further communication.

The Kerberos protocol consists of several sub-protocols (or exchanges). There are two
methods by which a client can ask a Kerberos server for credentials. In the first approach,
the client sends a cleartext request for a ticket for the desired server to the AS. The reply
is sent encrypted in the client’s secret key. Usually this request is for a ticket-granting
ticket (TGT) which can later be used with the ticket-granting server (T'GS). In the second
method, the client sends a request to the TGS. The client sends the TGT to the TGS in the
same manner as if it were contacting any other application server which requires Kerberos

credentials. The reply is encrypted in the session key from the TGT (see Figure 2.2).

To verify the identities of the principals in a transaction, the client transmits the ticket
to the server. Since the ticket is sent “in the clear” (parts of it are encrypted, but this
encryption doesn’t thwart replay) and might be intercepted and reused by an attacker,
additional information is sent to prove that the message was originated by the principal
to whom the ticket was issued. This information (called the authenticator) is encrypted
in the session key and includes a timestamp. The timestamp proves that the message was
recently generated and is not a “replay”. Encrypting the authenticator in the session key
proves that it was generated by a party possessing the session key. Since no one except the
requesting principal and the server know the session key (it is never sent over the network
in the clear), this guarantees the identity of the client.

The integrity of the messages exchanged between principals can also be guaranteed
using the session key (passed in the ticket and contained in the credentials). This approach

provides detection of both replay attacks and message stream modification attacks. It is

27

KerberosKDC

AS TGS
A &
& $
N ¢
AY)
e I A
g /L O &
S A
& & Q&\ (@
N/ >/ &
.«
CLIENT - SERVER
5. Request service

AS: Authentication Server
TGS: Ticket Granting Server
TGT: Ticket Granting Ticket

Figure 2.2: Authentication protocol in Kerberos.

accomplished by generating and transmitting a collision-proof checksum (elsewhere called
a hash or digest function) of the client’s message, keyed with the session key. Privacy and
integrity of the messages exchanged between principals can be secured by encrypting the
data to be passed using the session key passed in the ticket and contained in the credentials.

The Kerberos protocol is designed to operate across organizational boundaries. A client
in one organization can be authenticated to a server in another. Each organization wishing
to run a Kerberos server establishes its own realm. The name of the realm in which a client is
registered is part of the client’s name and can be used by the end-service to decide whether
to honor a request. By establishing inter-realm keys, the administrators of two realms
can allow a client authenticated in the local realm to use its authentication remotely. The

exchange of inter-realm keys registers the ticket-granting service of each realm as a principal

28

in the other realm. A client is then able to obtain a ticket-granting ticket for the remote
realm’s ticket- granting service from its local realm. When that ticket-granting ticket is used,
the remote ticket-granting service uses the inter-realm key to decrypt the ticket-granting
ticket and is thus certain that it was issued by the client’s own TGS.

Realms are typically organized hierarchically. FEach realm shares a key with its par-
ent and a different key with each child. If an inter-realm key is not directly shared by two
realms, the hierarchical organization allows an authentication path to be easily constructed.
However, in order to make communication between two realms more efficient, intermediate
realms may be bypassed to achieve cross-realm authentication through alternate authenti-
cation paths.

Limitations of Kerberos are discussed in detail in [BM90]. Though most apply to Ker-
beros V4 and have been addressed in V5, a few fundamental ones remain. Kerberos is
not effective against password guessing attacks; if a user chooses a poor password, then
an attacker guessing that password can impersonate the user. Similarly, Kerberos requires
a trusted path through which passwords are entered. If the user enters a password to a
program that has already been modified by an attacker (a Trojan horse), or if the path be-
tween the user and the initial authentication program can be monitored, then an attacker
may obtain sufficient information to impersonate the user. Kerberos can be combined with
other techniques, like one-time passwords and public-key cryptography, to address these
limitations.

Source code releases for V4 and Beta V5 Kerberos are freely available from the MIT,
however, MIT does not officially support these releases. Several companies have taken

reference implementations from MIT and provide commercially supported products!®.

'8Information on the free releases and the supported versions can be obtained by sending a message to
info-kerberos@mit.edu.

29

2.3.2 SPX

SPX [TA91] is an experimental authentication system developed by the Digital Equip-
ment Corporation. It is a component of Digital’s Distributed Authentication Security Ser-
vice (DASS) architecture [Kau93]. SPX performs a function very similar to Kerberos, but
unlike Kerberos, it is based on public-key authentication. Each SPX principal (user or
server) has an RSA key pair as opposed to a DES key in Kerberos.

SPX uses the X.509 syntax for public key certificates and originally envisaged using the
X.500 directory service for the distribution of certificates!®. But since X.500 has not been
deployed extensively, the designers invented their own certificate distribution service, called
the Certificate Distribution Center (CDC). Unlike Kerberos, which stores an association
between users and their DES keys, SPX stores each user’s certificate and the user’s private
RSA key encrypted with a DES key (derived from the user’s password). Since the user’s
password is not stored on the CDC in any form and since the RSA private key is stored
only in an encrypted form, a CDC does not have to be as “secured” as a Kerberos KDC.

SPX makes use of two types of certificates. Normal certificates, where the certifying
authority (CA) issues a certificate for an end-user, and Trusted Authority (TA) certificates
where the end-user signs a certificate binding the CA’s name to its key. Although SPX uses
a hierarchy of certificates, the root of the hierarchy does not need to have it’s key widely
known and trusted. Instead, each CA below the root maintains a TA certificate that binds
the root’s key with its name.

When an user logs into a workstation using the SPX system, a random RSA key-pair
(called delegating key-pair) is generated for him. The workstation sends a request to the
CDC indicating that it wants the information that the CDC has stored for the user. The
CDC returns the user’s certificate, a TA certificate for the certifying authority, and the user’s

permanent RSA private key (encrypted by the user’s password). The user is prompted for

19 A certificate consists of a user name, a public key, the name of the entity which has signed it and other
bookkeeping information.

30

a password which is used to decrypt the encrypted RSA private key. It then uses the user’s
permanent public key (contained in the certificate) to verify the TA from which it obtained
the user’s certificate.

For authentication and key exchange, SPX principals can act in two capacities: (1) the
entity seeking to be recognized as authentic (claimant), and (2) the entity seeking to au-
thenticate the claimant (verifier). To obtain a service, a user principal (claimant) requests
a certificate for the server principal (verifier) from the CDC. It then verifies the authenticity
of this certificate using the public keys of its trusted authorities (TA). The claimant then
generates an authenticating DES key for this session and uses its claimant credentials to

make an authentication token consisting of:

e its name,

its ticket (a delegation public key signed by the user’s long term private key),

the authenticating DES key encrypted by the verifier’s public key,

the signature on the enciphered DES key using the delegation private key, and

an authenticator, which is a timestamp and a cryptographic checksum computed using

the authenticating DES key.

The token is sent to the verifier which recovers the encrypted DES key by using its private
key. It then verifies the validity of the authenticator in the token received. It also checks
the signature on the encrypted DES key using the public key in the ticket. At this time the
verifier knows that it has a good authentication, but not the identity of the principal who
made it. It uses the “claimed” identity to obtain the appropriate certificate from the CDC
and finds one that contains the public key that can verify the signature on the ticket. If
this certificate can be verified using the verifier’s trusted certificate, the claimant’s identity
is accepted. For mutual authentication, the verifier sends an authenticator (a timestamp

and a cryptographic checksum computed on the authenticating DES key) to the claimant.

31

If the authenticator is good, the claimant is assured of the identity of the verifier (only the
verifier knows the private key required to extract the DES key in the first place).

For key revocation, SPX supports the X.509 revocation list mechanism. This provides a
dated, signed list of revoked certificate serial numbers as an attribute of each CA and would
be read from the CDC along with certificates as needed. This is not included in the initial
implementation. Currently, the only form of revocation available is to delete certificates
and user entities from the CDC database.

The largest drawback of SPX is that it remains an experimental system that has not
been widely deployed. It is likely that the overall performance of a large distributed system
using SPX may compare poorly with one using Kerberos, since the RSA operations involved

in an SPX authentication exchange are extremely compute intensive.

2.3.3 Diffie-Hellman

The Diffie-Hellman (DH) key exchange (§ 2.1.2.2) provides a mechanism by which two
parties can negotiate a shared session key, without fear of eavesdroppers. It does not require
the presence of a centralized key distribution system and provides an elegant solution to
the key distribution problem. Fach party participating in a DH handshake exchanges their
public keys with each other and computes the shared DH key. After each side generates the
DH key, it is used to encrypt a session key which is then shared between the communicating
parties. Each party extracts the session key from the encrypted payload and uses this
session key to encrypt data using conventional secret key encryption.

The Diffie-Hellman key exchange protocol can easily be extended to work with three or
more users. Each user generates a long-lasting private value X; and calculate a public value
Y;. These public values, together with global public values for ¢ and a are stored in some
central directory. At any time, user J can access user i’s public value, calculate a secret key
and use that to send an encrypted message to user i. If the central directory is trusted, then

this form of communication provides both confidentiality and authentication. Since only i

32

and j can determine the key, no other user can read the message (confidentiality). Recipient
i knows that only user j could have created a message using this key (authentication)?°.

One of the problems with the standard Diffie-Hellman protocol is that the public keys
exchanged between the participating entities are not authenticated. Due to this, encrypted
channels created using Diffie-Hellman key exchanges are vulnerable to man-in-the-middle
attacks. Though there are techniques for secure transmission of authentication information
while using this algorithm (based on the Interlock Protocol [RS84] [BM92] [BM93]), all of
them require prior transmission of authenticated data.

A promising development is the use of X.509 certificates, RSA digital signatures, and

Secure DNS resource records to authenticate DH public keys. This would facilitate the

secure use of Diffie-Hellman.

2.3.4 X.509

X.509 [C.C88b] defines the authentication framework for the CCITT X.500 series of
recommendations [C.C88a] [Sta95] that define a directory service. In addition, X.509 also
defines a generic set of security services that can be adopted by other applications. X.509
was initially issued in 1988 and was subsequently revised in 1993 to address some of the
security concerns documented in [Col90].

The X.500 directory may serve as a repository of public-key certificates, where each
certificate contains the public key of a user and is signed with the public key of a trusted
certification authority. The user certificates in the X.509 scheme (see Figure 2.3) are as-
sumed to be created by some trusted certification authority (CA) and placed in the directory
by the CA or by the user. The directory server itself is not responsible for the creation of
public keys or for the certification function; it only provides an easily accessible location
for users to obtain certificates. The user certificates generated by a CA have the following

properties.

2®However this technique does not protect against replay attacks.

33

e Any user with access to the public key of the CA can recover the public key of users
served by the CA. The public key of the CA is used to verify the digital signature,

which guarantees the integrity of the certificate information held for each user.

e No party other than the CA can modify the a user’s certificate without it being

detected.
Version
Serial Number
________ agorithm Algorithm
parameters Identifier
| ssuer
not before Period of
not after Validity
Subject
algorithm)
————————— S L LU — Subject’s
parameters _
————————————————————— public key
key
Signature

Figure 2.3: An X.509 certificate
Source: [Sta95]

Since it is not practical for a large community of users to subscribe to the same CA,
X.509 supports the existence of multiple CAs, each of which securely provides its public

key to some fraction of users. In order to reciprocally authenticate each other, users must

34

obtain the complete forward and return certification paths from the directory?'. In order
to avoid delays, implementations are designed to cache the results of directory lookups for
later reuse.

To handle instances such as the security of the private key of a user or CA getting
compromised, X.509 makes provisions for the revocation of certificates. Each CA maintains
a list of all revoked (but not expired) certificates issued by the CA, including both those
issued to users and to other CAs. Each certificate-revocation list is also signed by the issuer
and posted on the directory service. When a user receives a certificate in a message, the
user is expected to determine whether the certificate has been revoked by querying the
directory service.

X.509 also includes one-way and mutual authentication procedures, based on public-key

digital signatures, that are intended for use across a variety of applications.

2.4 UNIX Security Systems

This section surveys how different UNIX security systems provide confidentiality, au-
thentication and integrity services. In order to compare and contrast different systems, an
attempt is made to classify systems based on the layer in the OSI model where support for
security is provided. Since this research focussed mainly on cryptographic software solu-
tions, data-link layer encrypting devices like the DEC Ethernet encrypting devices are not

considered in this survey.

2.4.1 Network layer security

Traditionally, the network layer is the lowest end-to-end layer and is a natural place

to provide end-to-end security. Since the current Internet Protocol (IPv4) [Pos81] does

21 A certification path is a list of certificates that allows a user to get the public key of another user; each
item in the list is a certificate for the CA of the next item on the list.

35

not provide explicit support for cryptographic security, this is achieved by encapsulating
encrypted IP datagrams inside other IP datagrams and by providing authentication of the
clear-text IP headers and data using one-way hash functions. This approach makes it
possible to protect the secrecy and integrity of data in an internetworking environment
without affecting higher level protocols and applications. Providing security services at the
network layer also avoids the need to replicate the security functions in multiple transport
protocols or user programs. Currently, network-level security mechanisms are mainly used
to prevent passive-attacks by creating a secure “tunnel” between two hosts separated by an

insecure network.

2.4.1.1 swlPe

swlPe was designed by Ioannidis and Blaze [IB93] to complement IP functionality by
adding the necessary security features without altering the structure of IP. This is accom-
plished by encapsulating IP datagrams within IP datagrams of a new IP Protocol type.
These new datagrams carry the payload of the original IP datagram, enough header in-
formation to reconstruct them at the remote end and any additional security information
that may be needed. swIPe provides a clean model for host-to-host encryption and au-
thentication. swlPe system consists of three conceptual entities on top of the ordinary IP
mechanisms: the security processing engine, the key management engine, and the policy
engine.

The policy engine is responsible for examining outgoing packets to determine whether
they require swlPe processing, examining incoming packets to determine whether they are
to be accepted and deciding the exact nature of processing. Currently swlPe follows a
simple policy of deriving security associations on a host-by-host basis.

The key management engine establishes the session cryptographic variables used by the
security processing engine. It also communicates with the key management engines on other

hosts to establish key associations and is responsible for managing any required secure key

36

exchanges. Though swIPe can employ both public-key and private-key methods for key
management, it currently supports only static key distribution.

The security engine applies the actual authentication, integrity and confidentiality pro-
cessing on individual datagrams, as controlled by the policy engine and using keys provided
by the key management engine.

For output processing, the policy engine examines the IP packets and determines if
the packet requires encryption, authentication or both. If so, a swlPe header is generated;
the security processing engine obtains the keys from the key management engine, applies
the appropriate encryption and authentication algorithms and sends the resulting encap-
sulated packet for delivery. For input processing, the swIPe policy engine examines the
incoming IP datagram; if the packet is already a swIPe packet, it is passed to the security
engine, which processes it in a manner analogous to the swlPe processing of outgoing IP
packets. Otherwise, the policy engine determines whether the packet is admissible without
authentication/encryption and if so, passes it on to IP for regular input processing.

swlPe under UNIX is implemented using a virtual network interface. The part of the im-
plementation that process incoming and outgoing packets are entirely in the kernel; param-
eter setting and exception handling, however, are managed by user level processes. Though
the current implementation is not stable enough for general distribution, it provides a ve-
hicle for experimenting with alternate security algorithms, policies and key-management

strategies.

2.4.1.2 SKIP

Simple Key-Management for Internet Protocols (SKIP) [AP95] was designed and devel-
oped by Sun Microsystems as a means to provide enhanced security at the network layer
for host-host communications. Although its security architecture is similar to the one in
swlPe, SKIP also offers an interesting solution to the key-distribution problem.

In SKIP, each host (principal) has a certified public key associated with its name. Each

37

host uses a Diflie-Hellman key exchange to share a key which is computable based solely
on the knowledge of the other principal’s public key certificate. A master key, or key-
encrypting key (K;;), is derived by taking the low-order key-size bits from the shared key.
An individual IP packet is encrypted (or authenticated) using a randomly-generated packet
key (K,). K, is encrypted by the master key (K;;) and sent in-band with the IP datagram
to the destination host. The two-level key hierarchy reduces the exposure of the master
key, making cryptanalysis more difficult. This also makes it possible to use a new packet
encrypting/authenticating key (X,), should the old one get compromised.

The SKIP system consists of three main components.

e Key management is carried out by a key-manager daemon (running in user-space),
which maintains a database of certificate information about peers. It is also responsi-
ble for the DH key exchange and the computation of the keys (&;; and K,) required

for encryption/authentication.

o A SKIP data crypt engine , which in conjunction with the key-manager, provides bulk

data encryption/decryption services to kernel clients.

e A SKIP streams module, located between the IP layer and the network interface,
maintains a policy engine which decides if the packets are passed in the clear, dropped,

or sent to the bulk data crypt engine for encryption/decryption.

All communications between the SKIP kernel and the key manager take place using a
pseudo device driver. Solaris?? SKIP operates entirely transparently requiring no modifica-
tions either to existing applications or OS software. During the system boot process, the
SKIP streams module is inserted in between the IP layer and the network interface using
standard streams operations. The SKIP module intercepts all packets entering and leaving

the IP layer.

?2Golaris is the name of the UNIX operating system running on Sun machines.

38

SKIP is currently being used in proprietary Sun products like SunScreen, to provide a

secure encrypted “tunnel” between two hosts.

2.4.2 Transport layer security

Most of the transport level security packages provide “secure” alternatives for common
connection oriented services like telnet, rlogin and rsh. In these packages, traffic between

the client and server can be encrypted, thereby eliminating the risk of passive monitoring.

2.4.2.1 SSH

Secure Shell (SSH) [Tat95] is a program developed by Tatu Ylonen of Finland. It is
intended as a replacement for rlogin, rsh and rcp. It provides strong authentication and
secure communications over insecure channels. Additionally, SSH provides secure X connec-
tions and secure forwarding of arbitrary TCP connections. The authentication mechanism
in SSH is based on RSA. The user’s RSA public key is stored on the server machine under
the user’s home directory. The user’s private key is stored in an encrypted form on the
user’s local machine. Each server host and the SSH server program on each host?® have
their own RSA key-pair.

The software consists of a server program (sshd) running on a server machine and a
client program (ssh) running on a client machine. When the client initiates a connection,
the server accepts the connection and responds by sending back its version identification
string. The client parses the server’s identification and sends its own identification. The
purpose of the identification strings is to validate that the connection was to the correct
port, declare the protocol version number used, and to declare the software version used on
each side. If either side fails to understand or support the other side’s version, it closes the

connection.

23The purpose of the separate server key is to make it impossible to decipher a captured session if the
server machine gets compromised at a later time.

39

After the protocol identification phase, both sides switch to a packet-based binary pro-
tocol to authenticate each other. The server starts by sending its host’s public key and the
server public key to the client. The client then generates a 256-bit session key, encrypts
it using both public keys (received from the server), and sends the encrypted session key,
selected cipher type and other information to the server. Both sides then turn on encryp-
tion using the selected algorithm and key. The server then sends an encrypted confirmation
message to the client.

For user-host authentication, the client tells the server the public key that the user
wishes to use. The server checks if this public key is admissible. If so, it generates a
random number, encrypts it with the user’s public key and sends the value to the client.
The client then decrypts the number with its private key, computes an MD5 checksum
from the resulting data and sends the checksum back to the server. The server computes
the checksum from its copy of the data and compares the checksums. Authentication is
accepted if the checksums match.

Though SSH secures the network connection, it does not protect the user against any-
thing that compromises the host in some other way. An attacker with super-user privileges
on the SSH host can subvert SSH. Also, SSH assumes that an attacker cannot modify the

public keys stored under the user’s home directory on the server host.

2.4.2.2 Secure Telnet variants

There are several encrypting telnet programs available today. The most standardized
one is a Kerberized telnet from MIT. However it requires the existence of a full Kerberos
environment. Since this requires additional effort, Kerberized telnet is not ubiquitous yet.

STEL(Secure TELnet) [VTB95], was developed at the University of Milan, Italy. It
consists of a client (stel) which is run by users and a server (steld) which is a stan-
dalone daemon running with superuser privileges. STEL is intended to act as a “surrogate”

replacement for telnetd, rlogind and rshd. The session keys used for encryption are de-

40

rived from a Diffie-Hellman(DH) key exchange procedure. STEL uses the Interlock Protocol
[RS84] to defeat man-in-the-middle attacks on the DH key exchange. Upon establishing a
secure channel, the user has a variety of methods (SecurID, S/Key and standard UNIX
passwords) to authenticate himself. For encryption, currently STEL supports the DES,
3-DES and IDEA algorithms. An interesting feature of STEL is that it provides support
for an S/Key key distribution center, which allows the S/Key keys to be centralized in a
single place?*. STEL does not currently use standard telnet option negotiation which would
have made it more interoperable with other secure telnet implementations.

AT&T Bell Labs has developed an encrypting telnet [BB95] program for internal use.
Like STEL, it uses Diffie-Hellman key-exchange to create a session-key. However, it uses
challenge/response devices to authenticate the key. Key exchange, encryption, and chal-
lenge/response parameters are all negotiated and transmitted via extensions to the telnet
options mechanism. telnet and telnetd first determine that they have encryption capabil-
ity (using the WILL/WONT, DO/DONT protocol) and then negotiate keys as sub-options
using the SEND/IS mechanism. In order to prevent an active attacker from hijacking the
session in progress and forcing a return to cleartext or a change to a different key by in-
jecting bogus DO/DONT, WILL/WONT sequences, the key exchange protocol can occur
at most once per session. Once encryption has commenced, telnetd refuses to revert to
cleartext mode or change keys. DES in CFB mode is used as the encryption algorithm.

SRA, from Texas A&M University [SHS93], is another secure telnet package. It is
based on Secure-RPC [Mic88] and uses Diffie-Hellman key exchange to negotiate a session
key. This session-key is used only to transmit the user’s login and password; the remainder
of the session is not protected. Since the modulus size for the DH key exchange is just 192

bits, the key-exchange procedure is vulnerable to cryptanalysis.

248 /Key currently requires a separate key database for each machine.

41

2.4.2.3 Kerberos ‘r’ commands

The Kerberos distribution from MIT contains enhanced versions of rlogin and rsh
which authenticate users by taking advantage of the Kerberos infrastructure. The client
(rlogin/rsh) uses the ticket-granting ticket for the user (obtained by using kinit) to get a
ticket from the KDC for the desired service (host ?°) on the server machine. It then presents
this ticket to the ‘host’ service on the destination host which allows the connection if the
ticket is authenticated. Kerberos Version 5 (beta) supports encryption of rsh and rlogin

sessions.

2.4.3 Session layer security

Though the transport layer is the natural place to secure individual network connections,
application level firewalls and multi-hop login sessions (e.g. via terminal servers) sometimes
make it necessary to implement security at a higher layer. Also, some protocols like Secure-
RPC are designed to operate over multiple transport mechanisms. This makes the session

layer a suitable place to secure networked communications.

2.4.3.1 Sun’s Secure-RPC

Sun Microsystems’s RPC (ONC RPC) protocol [Mic88] is based on the remote procedure
call model [Bir84]. In the remote procedure call model, one thread of control logically winds
through two processes: the caller’s (client) process and a server’s process. The caller process
first sends a call message to the server process and waits (blocks) for a reply message.
Once the reply message is received, the results of the procedure are extracted and caller’s
execution is resumed. On the server side, a process is dormant awaiting the arrival of a
call message. When one arrives, the server process extracts the procedure’s parameters,

computes the results, sends a reply message, and then awaits the next call message.

2°Kerberos Version 5 uses a common service ‘host’, for all the Berkeley ‘r’ commands.

42

Since remote procedure calls can be transported over insecure networks, provisions for
authentication of caller to service and vice-versa are provided as a part of the ONC RPC
protocol. Security and access control mechanisms can be built on top of this message

authentication. There are currently three authentication flavors that can work with ONC

RPC.
e UNIX authentication
e DES authentication

e Kerberos Version 4 authentication

UNIX authentication (called AUTH_UNIX or AUTH_SYS) attempts to provide se-
curity based on the UNIX user-id (uid) and group-id (gid) of the client process. This form
of authentication can be easily faked since there are no mechanisms to provide cryptograph-
ically secure authentication.

Unlike UNIX authentication, DES authentication (called AUTH_DES) does have a
verifier so that the server can validate the client’s credential and vice-versa. The contents
of this verifier is primarily an encrypted timestamp. The server can decrypt this timestamp
and if it is close to the real time?®, the server knows that the client must have encrypted
it correctly. The only way the client could encrypt it correctly is to know the conversation
key of the RPC session. The conversation key is a DES key which the client generates and
passes to the server in its first RPC call. The conversation key sent to the server is encrypted
using a shared DES-key (derived from a Diffie-Hellman (DH) public key exchange®” between
the client and server). The client too must check the verifier returned from the server (the
encrypted timestamp it received from the client, minus one second) to be sure it is legitimate.
If confidentiality is required, the conversation key can be used to encrypt messages between

the client and server. It should be noted that the public keys used in the Secure-RPC DH

2°The client and the server need the same notion of the current time in order for this to work.
2"The base and 192-bit modulus for the Diffie-Hellman key exchange are constant and are ‘hard-coded’.

43

key exchange are unauthenticated and hence are vulnerable to active attacks.
Authentication using the Kerberos Version 4 protocol (called AUTH_KERB4) was
added recently to the ONC RPC specification®®. This mode of authentication requires the
hosts, on which client and server RPC processes run, to be members of a Kerberos V4
realm. Conceptually, AUTH_KERB4 based authentication in Secure-RPC is very similar
to AUTH_DES authentication. The major difference is that Kerberos-based authentication
takes advantage of the fact that Kerberos tickets have the client’s name and conversation
key encoded in them, thereby avoiding the need for a separate key exchange process to

derive a conversation key.

2.4.3.2 Encrypted Session Manager (ESM)

The Encrypted Session Manager (esm) [BB95], from AT&T Research Labs is a system
which provides privacy and confidentiality at the session layer. Although the telnet pro-
tocol is a natural place to define network session security, it is not always possible to run
telnet directly between arbitrary trusted endpoints. Application level firewalls, multi-hop
login sessions (e.g., via terminal-servers), and non-TCP/IP connections like kermit and
tip, sometimes make it necessary to have security at a higher layer than the transport
layer.

esm exploits the BSD “pseudo-tty” mechanism to provide a layer under which every-
thing between the user’s local and remote login sessions are transparently encrypted and
decrypted. When first invoked from an interactive shell, esm provides a transparent pseudo-
terminal session on the local machine, passing all the I/O from the terminal session to the
shell session. When invoked in the “server mode” from within an existing ESM session
(the second session is typically on a remote machine), the two ESM processes automati-

cally encrypt all traffic passed between them. The encryption key is derived via a 1024-bit

28 Authentication support in Secure-RPC using Kerberos is not specified in RFC 1057.

44

Diffie-Hellman key exchange?? initiated by the remote server. Since the typical user-to-host
session traffic is “stream-oriented”, esm uses 3-key triple DES in Cipher Feedback (CFB)
mode for encryption/decryption. ESM is distributed as a part of the Cryptographic File

System (CFS) package available from AT&T Bell Laboratories®.

2.4.4 Application layer security

Security is provided at the application layer, when the underlying layers cannot provide
the requisite security services to the application. S/Key is a “one-time password” system
that protects user passwords against passive attacks. PEM /PGP are different mechanisms
used for secure electronic mail over the Internet and provide excellent case studies of public-
key cryptographic systems. TCP-Wrappers is a package which uses host names/addresses to
authenticate service-requests coming from remote hosts. Kerberos offers code-libraries and
application programming interfaces that enable users to develop new applications which can
take advantage of the security services offered by the Kerberos infrastructure. The following
subsections describe how these applications provide enhanced security services by building

up on the services offered by other security systems.

2.4.4.1 S/KEY

The S/KEY authentication system is a scheme that protects user passwords against
passive attacks. With the S/KEY system, only a “single-use” password ever crosses the
network. The user’s secret pass-phrase never crosses the network at any time, including
during login or when executing other commands requiring authentication such as the UNIX
commands passwd or su. S/Key can be easily and quickly added to almost any UNIX

system without requiring any additional hardware.

?*The public keys used in the Diffie-Hellman key exchange are not authenticated, thereby making the
exchange vulnerable to active attacks.
*°Matt Blaze (mab@research.att.com) is the contact person at AT&T Bell Labs.

45

The S/KEY system is based on the MD4 Message Digest algorithm3'. The S/KEY
one-time passwords are 64-bits in length. This is believed to be long enough to be secure
and short enough to be manually entered when necessary. The S/KEY secure hash function
consists of applying MD4 to a 64-bit input and folding the output of MD4 (128-bits long)
with exclusive-OR to produce a 64-bit output.

There are two sides to the operation of the S/KEY one-time password system. On the
client side, the appropriate one-time password must be generated. On the host side, the
server must verify the one-time password and permit the secure changing of the user’s secret
pass-phrase.

The client’s secret pass phrase may be of any length and should be more than eight
characters®?. Since the S/KEY secure hash function described above requires a 64-bit
input, a preparatory step is needed. In this step, the pass phrase is concatenated with
a seed that is transmitted from the server in clear text. This non-secret seed allows a
client to use the same secret pass phrase on multiple machines (using different seeds) and
to safely recycle secret passwords by changing the seed. A unique sequence of one-time
passwords is produced by applying the secure hash function multiple times to the output of
the preparatory step (called S). That is, the first one-time password is produced by passing
S through the secure hash function a number of times (N) specified by the user. The next
one-time password is generated by passing S though the secure hash function N-1 times.
An eavesdropper who has monitored the transmission of a one-time password would not be
able to generate any succeeding password because doing so would require inverting the hash
function. The one-time password generated by the above procedure is 64 bits in length.
Entering a 64-bit number is a difficult and error prone process. The one-time password
is therefore converted to, and accepted as, a sequence of six short (1 to 4 letter) English

words. Fach word is chosen from a dictionary of 2048 words. Interoperability requires at

*IThe Naval Research Labs (NRL) has generated a functionally similar system, “OPIE”, with support for
both MD5 and MD4.

#2To make dictionary attacks more difficult.

46

all S/KEY system hosts and calculators use the same dictionary.

A function on the host system that requires S/KEY authentication is expected to is-
sue an S/KEY challenge. This challenge give the client the current S/KEY parameters -
the sequence number and seed. The host system has a file (on the UNIX reference imple-
mentation, it is /etc/skeykeys) containing, for each user, the one-time password from the
last successful login, To verify an authentication attempt, it passes the transmitted one-
time password through the secure hash function®® one time. If the result of this operation
matches the stored previous one-time password, the authentication is successful and the

accepted one-time password is stored for future use®?.

2.4.4.2 PEM

PEM is the Internet Privacy-Enhanced Mail standard adopted by the Internet Architec-
ture Board (IAB) to provide secure electronic mail over the Internet. The PEM protocols
provide for encryption, authentication, message integrity and key management.

PEM is compatible with the X.509 authentication framework. The key-management
infrastructure establishes a single root for all Internet certification. The Internet Policy
Registration Authority (IPRA) establishes global policies that apply to all certification
under this hierarchy. Under the IPRA root, are the Policy Certification Authorities (PCAs),
each of which establishes and publishes its policies for registering users or organizations.
Each PCA is certified by the IPRA. Beneath the PCAs, CAs certify users and subordinate
organizational entities.

A PEM message consists of the user’s message, in either plaintext or ciphertext, and
associated PEM headers. For message integrity and authentication, PEM uses a message

integrity code (MIC) which is calculated over the entire message. The algorithm used to

calculate the MIC (currently PEM supports MD2 and MD5) is specified in the PEM header.

#¥(Clients and hosts must use the same secure hash function to interoperate.
#*This verification technique was first suggested by Leslie Lamport [Lam81].

47

Though PEM supports both asymmetric or symmetric encryption techniques for authen-
tication, the asymmetric approach is much more common. For ‘asymmetric-encryption’
authentication (RSA is the only algorithm supported), the MIC is encrypted with the orig-
inator’s public key, forming a digital signature. The recipient verifies the signature using
the originator’s public key, which is either obtained via the X.500 directory service or by
a signed certificate included in the message header. For ‘symmetric-encryption’ authen-
tication (currently DES and 3-DES are supported), the MIC is encrypted with a secret
symmetric key shared by the originator and recipient.

Message encryption is an optional service for PEM messages. If a message is encrypted,
the message header includes a header that indicates the encryption algorithm used. Cur-
rently only DES-CBC mode encryption is supported. PEM makes a distinction between
data encrypting keys (DEKs) and interchange keys (IKs). An IK can either be a symmetric
key ‘securely’ shared between the originator and recipient, or a public/private key pair with
the public key being ‘reliably’ shared between the originator and recipient. A DEK is a
one-time session key used to encrypt message text.

Despite its name, PEM is not a program for exchanging private e-mail. RIPEM, written

by Mark Riordan, is a popular implementation of the PEM standard.

2.4.4.3 PGP

Pretty Good Privacy (PGP) is a confidentiality and authentication service, originally
designed by Phillip Zimmermann, which can be used for secure electronic mail. It uses
IDEA for data encryption, RSA for key management and digital signatures, and MD5 for
message integrity.

PGP’s random public keys use a probabilistic primality tester and get their initial seeds
from measuring the user’s keyboard latency while typing. PGP generates random IDEA
keys by distilling a secret seed value and a timestamp through IDEA and using the output

as the key.

48

An interesting aspect of PGP is its distributed approach to key management. There
are no certification authorities; PGP instead uses a “a web of trust”. Every user generates
and distributes his own public key. Users sign each other’s public keys, creating an inter-
connected community of PGP users. PGP does not specify a policy for establishing trust;
instead it provides mechanisms for associating trust with public keys and leaves it to the
user to decide the degree of trust. Each user keeps a collection of signed public keys in a file
called a public-key ring. Fach key in the ring has a key-legitimacy field that indicates the
degree to which the particular user trusts the validity of the key. Since key distribution is
entirely ad-hoc, revocation of keys is a problem in PGP. It is impossible to guarantee that
no one will use a compromised key.

PGP-encrypted messages have layered security. The only thing a cryptanalyst can learn
about an encrypted message is who the recipient is. Only after the recipient decrypts the
message does he learn who signed the message, if it is signed. In contrast, PEM reveals quite

a bit of information about the sender, recipient and message in the unencrypted header.

2.4.4.4 Kerberos

The Kerberos distribution includes code-libraries which provide APIs for adding au-
thentication, integrity and confidentiality to an application®® (section 2.3 gives a detailed
description of the Kerberos authentication process). The KRB_SAFE message may be used
by clients requiring the ability to detect modifications of messages they exchange. It achieves
this by including a keyed collision-proof checksum of the user data and some control infor-
mation. The checksum is keyed with an encryption key (usually the last key negotiated via
subkeys, or the session key if no negotiation has occurred). The KRB_PRIV message may be
used by clients requiring confidentiality and the ability to detect modifications of exchanged
messages. It achieves this by encrypting the messages and adding control information.

An interesting development is the specification of a standard applications program-

3% Adding Kerberos support to an application is called Kerberizing.

49

ming interface called the Generic Security Services Applications Programming Interface
(GSS-API) which can interact both with Kerberos and SPX. Programmers who write their
applications to conform to the GSS-API (§ 3.1.2) will be able to compile them either with
SPX or with Kerberos with minimal programming changes required to switch from one sys-
tem to another. The GSS-API specifications are still evolving since the initial document,

RFC-1508 [Lin93], was identified to have some deficiencies.

2.4.4.5 TCP-Wrappers

TCP-Wrappers is a TCP/IP daemon wrapper package written by Wietse Venema of
Eindhoven University of Technology, Netherlands. It is an example of a system in which
host-host authentication of network services gets implemented at the application level.
It can be used to monitor and filter incoming requests for the telnet, ftp, systat,
finger, rlogin, rsh, exec, tftp, talk, and other network services spawned by a “su-
per server” such as inetd. It supports both 4.3 BSD-style sockets and System V.4-style
Transport Layer Interface (TLI). The wrappers report the name of the client host and of the
requested service; it does not exchange information with the client or server applications
and impose no overhead on the actual conversation between the client and server appli-
cations. TCP-Wrappers also supports optional features such as: access control to restrict
what systems can connect to what network daemons; additional protection against hosts

that pretend to have someone else’s host name or host address.

2.5 Distributed Computing Environment

Open Software Foundation’s Distributed Computing Environment (DCE) provides a

136

broadly supported, vendor-neutral®® infrastructure for building distributed applications

[Kha94]. The services provided by DCE include support for RPC, a directory service,

**DCE has been implemented on multiple flavors of UNIX and also on VMS.

50

security services, and a distributed file system. This section looks at the security services
provided by DCE.

In DCE, authentication, data integrity, and confidentiality are provided by a slightly
modified version of Kerberos Version 5 (Kerberos is discussed in detail in Section 2.3). Ker-
beros by design does not address the problem of authorization (i.e., does an authenticated
client have the right to perform the service it is requesting). DCE provides this service
with access control lists (ACLs). When a service receives a request, that request typically
contains the privilege attribute certificate (PAC) of the requestor. This PAC identifies who
made the request and what groups he belongs to. A component of the server called the
ACL manager compares the information requestor’s PAC with the entries on the ACL of
the desired object. Access is allowed if they match correctly.

In typical distributed environment, most clients perform most of their communication
with only a small set of servers. This locality of reference is made explicit in DCE with
the notion of a cell. A cell has no fixed size; a cell’s size, both in the number of machines
and in geographical extent, is determined by the people administering the cell. Although
DCE allows communication between clients and servers in different cells, it optimizes for the
more common case of intra-cell communication. To obtain intra-cell binding information
for services, DCE provides a Cell Directory Service (CDS). When a client wishes to locate a
server within its own cell, it émporls that information from the CDS server. When a server
wishes to make its binding information available to clients, it ezports that information to one
of its cell’s CDS servers. Different cells can be linked together via existing global directory
service infrastructures like DNS and X.500.

Every cell runs at least one security server process. The services supported by a security

server include

o Registry service: The cell’s registry database stores entries for all the cell’s users

(principals), all of its groups and all of its organizations.

e Key distribution service: This is essentially Kerberos’s authentication and ticket

51

granting services.

o Privilege service: This service is responsible for providing privilege attribute certifi-

cates (PACs).

The security server must run on a secure machine, since the registry on which it relies
contains a secret key, generated from a password, for each principal in the cell. Although
the keys are encrypted while stored on disk, the key to decrypt them is also stored on the
machine, since DCE requires access to each principal’s key.

Since the DCE effort is supported by virtually every vendor, it is likely to become the

standard platform for distributed applications in a multi-vendor environment.

2.6 Security in IPv6

The Internet Engineering Task Force (IETF) started its effort to select a successor to
[Pv4 [Pos81] in late 1990 when projections indicated that the Internet address space would
become an increasingly limiting resource. Several parallel efforts then started exploring ways
to resolve these address limitations while at the same time providing additional functionality.
The Internet Protocol Next Generation (IPng) was recommended by the Area Directors of
the IPng Working Group of the IETF in July 1994 [BM95]. In November 1994, the Internet
Engineering Steering Group (IESG) approved the recommendation and made the protocol
a Proposed Standard with the formal name IPv6 [DH96]. The changes from IPv4 to IPv6

fall primarily into the following categories:
o Expanded Addressing Capabilities
e Header Format Simplification
e Improved Support for Extensions and Options

o Flow Labeling Capability

52

e Enhanced Security

This section describes the proposed security enhancements provided by IPv6.

There are two cryptographic security mechanisms for IP. The first is the Authentication
Header (AH) [Atk95a] which provides integrity and authentication without confidentiality.
The second is the Encapsulating Security Payload (ESP) [Atk95b] which always provides
confidentiality, and (depending on algorithm and mode) may also provide integrity and au-
thentication. The two IP security mechanisms may be used together or separately. The use
of these headers will increase the IP protocol processing costs in participating end systems
and also will increase the communication latency®”. However, these costs are expected to
be offset by the enhanced security provided by these mechanisms.

The concept of a Security Association is fundamental to both the IP Encapsulating
Security Payload and the IP Authentication Header. A Security Association normally
includes the authentication algorithm and algorithm mode being used with the AH; the
encryption algorithm, algorithm mode and transform being used with the ESP; the key(s)
used for the encryption and authentication algorithms; and other optional parameters.
[Atk95c]| specifies the all the parameters involved in a Security Association. The combination
of a given Security Parameter Index (the SPI is a 32-bit pseudo-random value identifying
the security association for an IPv6 datagram) and Destination Address uniquely identifies

a particular Security Association.

2.6.1 Authentication Header (AH)

The AH is designed to provide integrity and authentication without confidentiality to
IP datagrams. It might also provide non-repudiation, depending on the cryptographic
algorithm being used. The absence of the “confidentiality-requirement” for the AH ensures

that the implementations of the AH will be widely available on the Internet, even in locations

®"This is due to the time taken for computing and verifying the AH and the time taken for encryption
and decryption of the payload if ESP is used.

53

where the export, import, or use of encryption is regulated.

The authentication data carried by the IP Authentication Header is calculated using a
message-digest algorithm either by encrypting the message-digest or “keying” the message-
digest directly. It is calculated using all the fields in the IP datagram which do not change
in transit. Fields or options which need to change in transit are considered to be zero for
the calculation of the authentication data. All IPv6-capable hosts are required to implement

the IP Authentication Header with the MD5 algorithm using a 128-bit key.

2.6.2 Encapsulating Security Payload (ESP)

The IP Encapsulating Security Payload (ESP) seeks to provide confidentiality and in-
tegrity by encrypting the data to be protected and placing the encrypted data in the data
portion of the IP Encapsulating Security Payload. It may also provide authentication, de-
pending on which algorithm and algorithm mode are used. The IP Authentication Header
(AH) may be used in conjunction with ESP to provide authentication.

The first component of the ESP payload consist of the unencrypted field(s) of the pay-
load. The second component consists of encrypted data. The field(s) of the unencrypted
ESP header inform the intended receiver how to properly decrypt and process the encrypted
data. The encrypted data component includes protected fields for the ESP security protocol
and also the encrypted encapsulated IP datagram.

There are two modes under ESP. In Tunnel-Mode ESP, the original IP datagram is
placed in the encrypted portion of the Encapsulating Security Payload and that entire ESP
frame is placed within a datagram having unencrypted IP headers. The information in the
unencrypted IP headers is used to route the secure datagram from origin to destination. The

second mode, which is known as the Transport Mode, encapsulates an upper-layer protocol

(e.g., TCP or UDP) inside ESP and then prepends a cleartext IP header.

54

2.6.3 Key Management in IPv6

There are two keying approaches to IP. The first approach, called host oriented keying,
has all users on Hosty share the same key for use on traffic destined for all users on Hostp.
The second approach, called user-oriented keying, lets User; on host A have one or more
unique session keys for its traffic destined for host B; such session keys are not shared with
other users on host A.

Key management in [Pv6 is made orthogonal to the AH and ESP security protocol
mechanisms. This decoupling®® permits several different key management mechanisms to be
used. More importantly, it permits the key management protocol to be changed or corrected
without unduly impacting the security protocol implementations. Work is ongoing in the
IETF to specify a standard key management protocol. Photuris [Wil95], SKIP [Ash95] and

ISAKMP [Dou95] are three proposals for an Internet Standard key management protocol.

% The only coupling between the key management protocol and the security protocol is with the Security

Parameter Index (SPI).

55

Chapter 3

Design Issues in Crypto Systems

In the design of a “secure” distributed application, a number of issues have to be con-
sidered and carefully studied. The mechanism adopted for key management (§ 2.3) is very
important. Other factors that need to be considered are the choice of good encryption
algorithms and a generic cryptographic API to use them, a safe method to generate ran-
dom numbers to be used as session keys, the optimal key-lengths required to be protected
against brute-force attacks on the encryption algorithm used, and a mechanism to generate
the large numbers required in public key cryptography. These issues are discussed in the

following sections in this chapter.

3.1 Crypto API’s

Until recently, the integration of cryptographic functionality into application software
has required that developers tightly couple the application to the cryptographic module.
This approach forces each new combination of application and cryptography to be treated as
a distinct development and does not facilitate interoperability among different cryptographic
implementations. The use of a standardized Cryptographic Application Programming In-

terface (CAPI) provides the following advantages:

56

o Application programmers will need to learn only one set of cryptographic service calls

for multiple cryptographic applications.

o Cryptographic modules from different software developers, which conform to this in-
terface standard, may be interfaced to a given application without requiring modifi-

cation to the application program.

The compelling case for a modular cryptographic interface has given rise to the development
of numerous proposed CAPI standards. These proposals include the GSS-API(IETF), the
GCS-API(X/Open), and Cryptoki(RSA). Each of these CAPIs was designed to support
significantly different levels of security awareness; with the GSS-API requiring very little
cryptographic awareness and Cryptoki requiring extensive knowledge of underlying cryptog-
raphy. A cross-organizational team from the NSA developed the following criteria [Tea95]

to evaluate different CAPIs.

Algorithm Independence: The CAPI must provide access to a large number of choices
to current and future cryptographic algorithms. This property gives an application
access to any cryptographic algorithm supported by the underlying cryptomodule,

enhancing interoperability.

Application Independence: The CAPI must provide cryptographic service to a wide
variety of applications being written today, and to many new ones in the future. This
will give the CAPI widespread use and longevity. An application-independent CAPI
should be equally suitable for connection-oriented applications (e.g. file transfer) and

for store-and-forward applications (e.g. electronic mail).

Cryptomodule Independence: In providing its cryptographic service, a CAPI should be
able to support any current or future cryptomodule with equal ease. The application
should not need to know the specifics of the underlying cryptographic implementation;
e.g., the application need not know whether or not the cryptography is provided in

hardware or software.

57

Degree of Cryptographic Awareness: A complete CAPI should support both
cryptographic-aware and cryptographic-unaware applications. For a majority of ap-
plications, a minimal degree of cryptographic knowledge is needed by the developer.
However, for applications like key management, the programmer is expected to have

a higher degree of cryptographic knowledge.

Legacy support: Legacy support is defined as providing the extensibility, so that current

cryptography can be supported in future systems.

After evaluating different CAPIs based on these criteria, the NSA team concluded that
there was no single CAPI which adequately met all requirements. Rather than recom-
mending the selection of single CAPI, they suggested that a combination of different widely
accepted proposals be adopted. These proposals include the GSS-API, GCS-API, and Cryp-
toki. The main difference between these CAPIs is in the amount of cryptographic knowledge

required by both the application programmer and the user.

“GSS-API provides the safest interface, but the most limited capability to ma-
nipulate cryptography. Cryptoki and GCS-API provide applications with more
capabilities to manipulate the cryptography that increases the ability of the
application to misuse the interface. Since the majority of applications will be
cryptographic unaware, the bottom-line recommendation is for applications to
use GSS-APIL. Only if the application absolutely needs to be cryptographic aware

should GCS-API or Cryptoki be considered for use by the application” [Tea95].

3.1.1 Cryptographic Service Calls

A well-designed cryptographic API should be able to perform all standard cryptographic
operations without strict dependency on any algorithm or I/O mechanism. This would
enable an application programmer to incorporate cryptography into his application without

worrying about the specifics of any algorithm. A typical set of CAPI routines would include

58

the following.

Set_Context(): This function initializes the security context for a specific encryption algo-
rithm. The security context consists of the algorithm being used, the cipher mode of
the algorithm, the key used for encryption/decryption and the initialization vector(s)

used. The security context and the status are returned to the calling program.
Set_Context(context, algorithm, key, key_len, initialization_vector, status);

Encipher(): This routine enciphers a given length of plaintext data using a specific al-
gorithm and mode. The security context for the algorithm should be set prior to
invoking this function. The ciphertext, the length of the ciphertext and the status
are usually returned to the calling program. For a block cipher, depending on the
mode of operation, some padding may be added to the input plaintext data. Hence

the length of the ciphertext may be greater than the length of the plaintext.

Encipher(context, mode, ciphertext, ciphertext_len, plaintext, plaintext_len,

status);

Decipher(): This call decrypts the ciphertext of given length in the specified algorithm and
mode using the appropriate key. As in Encipher(), security context for the algorithm
should be set prior to invoking this function. The decrypted plaintext, the length of

the plaintext and the status are returned to the calling program.

Decipher(context, mode, plaintext, plaintext_len, ciphertext, ciphertext_len,

status);

Compute_Hash(): This routine computes the data authentication code (DAC) on a data
of given length using a specified algorithm and key. The computed DAC and resulting

status are passed back to the calling program.

Compute_Hash(key, algorithm, data, data_len, dac, status);

59

Verify_Hash(): This function first invokes Compute_Hash() to compute the DAC on the
given data using the specified algorithm and key. The resulting DAC is compared
with the input DAC to check if they match. If the DACs are identical, verification

succeeds. The result of the verification is returned to the calling program.
Verify_Hash(key, algorithm, data, data_len, dac, status);

Generate_Key(): This call generates a pseudo-random number of specified length. A seed
value can be used to reset the random number generator (rng) to a random starting

point. The result of this function can be used as a key for encryption/decryption.
Generate_Key(rng, seed, len, random_key, status);

Routines having the above functionality were used to incorporate cryptographic services
into secure PVM. In this research, the cryptographic libraries provided with Kerberos,

SSH, Cryptolib, RSAref, Crypto++ and SSLref were studied®.

3.1.2 Generic Security Service Application Programmer Interface

Since this research required access to cryptographic functions only at a relatively high
level, the GSS-API seemed to be the appropriate choice . The GSS-API is a portable set of
functions that allow application programmers to create secure applications without learning
the particular elements of any of the underlying authentication systems available to them.
The GSS-API can provide generic authentication, encryption and integrity checking services
to network applications. These applications include those built on the client-server model
and those that use peer-to-peer communications.

The GSS-API provides a library into which both sides of an application can make calls

for basic security services. The side initiating the communication (usually the client) begins

!Some of these libraries have newer implementations available now.

60

by acquiring credentials for its system according to whatever mechanism available toit?. All
GSS-APT’s functionality is based on the ability of entities to prove that they are who they say
are — 1.e., authenticate themselves. When the client side of the application initiates contact
with another entity, such as the server, it does so using a GSS-API function that allows the
programmer to specify the particular security options that the connection should use. The
authenticated connection between two entities is called a context. Having established such a
context, the two entities can then use the GSS-API to process data for exchange; GSS-API
processing always includes integrity checking and can also include encryption. The protocol
also offers methods for extracting logging information from the transactions, so that the
application programmer can have a record of the various interactions that take place.

After the two entities complete their exchange of data, either can destroy the context
on its end. This action creates a message or token. The entity that has destroyed its end
of the context then passes the token to the other entity, which indicates that the other end
should destroy its side of the context.

Quite a few deficiencies have been identified in the initial GSS-API specification pub-
lished in RFC-1508 [Lin93]. The IETF working group on Common Authentication Tech-

nologies (CAT) is working on addressing these deficiencies.

3.1.3 SSH’s Crypto-API

One of the goals of this research was to compare the performance of different encryption
algorithms. The GSS-API seemed to be the most suitable CAPI, since it requires minimal
knowledge of underlying cryptography and has interfaces for both private-key and public-
key cryptosystems. However, the GSS-API was not chosen for this research because of the

following reasons.

2The GSS-API does not provide the security mechanisms; it relies on existing mechanisms (e.g., Kerberos,
X.509) that are available.

61

1. The initial GSS-API presented in RFC1508 [Lin93] is not complete and its specifica-

tions are still evolving.
2. The lack of implementations of different algorithms supported by this API>.

3. Concerns about excessive degradation in performance for applications using the GSS-

APTY,

For this research, the crypto-API in the SSH® distribution was used. This API implemen-
tation includes support for a number of different algorithms and offers a reasonably generic
and portable interface to the underlying crypto-libraries. The algorithms supported by the

current implementation are:

DES: DES is used in CBC mode. The key is taken from the first 8 bytes of the session

key®. The least significant bit of each byte is ignored resulting in 56 bits of key data.

3-DES: This consists of three independent DES-CBC ciphers. The data is first encrypted
with the first cipher, then decrypted with the second cipher, and finally encrypted
with the third cipher. All these operations are performed in CBC mode. The key for
the first and third ciphers are taken from the first 8 bytes of the session key; the key

for the next cipher from the next 8 bytes of the session key.

IDEA: The key is taken from the first 16 bytes of the session key. IDEA is used in CFB

mode’.

RC4: This algorithm is the alleged RC4 cipher posted to the Usenet in 1995. It is widely

believed to be equivalent with the original RSADSI RC4 cipher. The first 16 bytes of

*The Kerberos V5 beta distribution has a GSS-API library for DES. However, I have not come across a
GSS-API implementation of IDEA.

*Jaspan [Jas93] reports slowdowns of a factor of ten when using the GSS-API to implement secure remote
procedure calls; though his study does not reveal why performance is reduced [Fos95].

®The URL for the SSH distribution is http://www.cs.hut.fi/ssh.

5The minimum length of the session keys used in this research is 16 bytes.

"Historically, most of the publicly available IDEA implementations have been in CFB mode, starting
with the IDEA implementation in the PGP distribution. A secret-key cipher operating on the same block
size in CBC and CFB modes has comparable performance [Sch96].

62

the session key are used as the key.

The generic design of the SSH crypto-API makes it also possible to add cryptomodules for
other encryption algorithms. The application can choose the suitable algorithm based on
the speed or strength of encryption required. Details about the relative performance of the

different encryption algorithms specified above can be found in Section 3.5.

3.2 Random Number Generation

Security systems today are built on increasingly strong cryptographic algorithms that
foil pattern analysis attempts. However, the security of these systems is dependent on
generating secret quantities which are used as passwords, session keys, initialization vectors,

and nonces®

in cryptographic protocols. Since the security of the protocol depends crucially
on the unpredictability of the secret quantities, it is vital that these quantities be generated
from an unpredictable random-number source. In this research, random numbers are used
in the generation of the public/private key pairs used in the Diffie-Hellman key exchange
and the session keys used for message encryption (§ 4.2.7).

The only truly random number sources are those related to physical phenomena such as
the rate of radioactive decay of an element or the thermal noise of a semiconductor diode.
Barring the use of external devices, computer programs that need random numbers must
generate these numbers themselves. However, since CPUs are deterministic, it is impossible
to algorithmically generate truly random numbers.

In the absence of truly random number sources, cryptographic applications make use of
Pseudo Random Number Generaltors (PRNG) for random number generation. A PRNG is
a function which takes a certain amount of true randomness, called the seed, and generates

a stream of bits which can be used as if they were true-random, assuming the adversary is

computationally limited and that the seed is large enough to thwart brute force attacks by

8 A nonce is a quantity which any given user of a protocol uses only once.

63

that adversary. A PRNG function has two properties.
o It looks random; i.e., it passes all the statistical tests of randomness.

e It is unpredictable; i.e., it must be computationally infeasible to predict what the
next random bit will be, given complete knowledge of the algorithm generating the

sequence and all of the previous bits in the stream.

A good method to select seed values for the PRNG is an essential part of a cryptographic
application. If the seed values for the PRNG can easily be guessed, the level of security
offered by the program is diminished significantly, since it requires less work for an attacker
to decrypt an intercepted message?. A description of the PRNG and the method used to

generate seed values for the PRNG are described in Section 4.2.7.

3.2.1 Limitations of Some Random Number Generation Techniques

A computer’s clock is often used as a seed for a PRNG. However, computer clocks provide
significantly fewer real bits of unpredictability than might appear from their specifications.
Different hardware configurations running the same version of an operating system may
provide different resolutions in a clock. This makes designing portable applications difficult
since the designer does not always know the properties of the system clocks that the code
will execute on [ECS94].

Use of a hardware serial number such as an Ethernet address may also provide fewer
bits of unpredictability. Such quantities are usually heavily structured and subfields may
have only a limited range of possible values or values easily guessable based on approximate
date of manufacture or other data. In the case of Ethernet addresses, the adversary can
also find out the address by using protocols like ARP!Y if he is on the same subnet as the

target host.

°The attack on Netscape’s implementation of the SSL protocol by Goldberg and Wagner was based on
predicting the seed used for random number generation.
10 Address Resolution Protocol, [Plu82]

64

It is possible to measure the timing and content of mouse movement, key strokes, and
similar user events. This is a reasonable source of unguessable data with some qualifica-
tions. On some machines, inputs such as key strokes are buffered. Even though the user’s
inter-keystroke timing may have suflicient variation and unpredictability, there might not
be an easy way to access that variation. Amnother problem is that no standard method
exists to sample timing details. This makes it hard to build standard software intended for
distribution to a large range of machines based on this technique.

Another strategy that can give a misleading appearance of unpredictability is the se-
lection of a quantity randomly from a database like the USENET archives and assuming
that its strength is related to the total number of bits in the database. For an adversary
with access to the same database, the unguessability rests only on the starting point of the
selection. The same argument applies to selecting sequences from the data on a CD ROM

or Audio CD recording or any other large public database.

3.2.2 Sources for Randomness

In the absence of a reliable hardware source, the best way to generate random numbers
is to find a lot of seemingly random events and distill randomness from them using a strong
mixing function. Such a function will preserve the randomness present in any of the sources
even if other quantities being combined are fixed or easily guessable. This randomness can
then be stored in a pool that applications can draw on as needed. Sources for randomness

in UNIX systems include

e timing between keystrokes

e actual mouse position

e air turbulence within a sealed disk drive
e CPU load

o contents of the kernel tables

e arrival times of network packets

65

access & modify times of /dev/tty

/dev/audio without a microphone attached

input from a microphone/camera

/dev/random

Encryption algorithms like DES and one-way hash functions like MD5 can be used as
mixing functions; each bit of output produced by these algorithms is dependent on a non-
linear function of all input bits. In this research, 3-DES is used as a mixing function to

distill randommness from readily available sources on the local machine (§ 4.2.7).

3.2.3 Key Generation Standards

Several public standards are now in place for the generation of keys. Two of these are
described below. Both use DES but any equally strong or stronger mixing function could

be substituted.

3.2.3.1 US DoD Recommendation for Key Generation

The United States Department of Defense has specific recommendations for password

generation [ECS94]. They suggest using DES in 64-bit Output Feedback Mode as follows:

e Use an initialization vector determined from the system clock, system 1D, user ID,

current date and time.

o Use a key determined from system interrupt registers, system status registers, and

system counters.

e And as plaintext, use an externally generated 64-bit quantity such as eight characters

typed in by a system administrator.

The 64-bit ciphertext generated as output in DES Output Feedback Mode can be used as a
key. If keys with larger key-lengths are required, a multiple number of keys can be generated

by the above process, and the resulting output can be concatenated together.

66

3.2.3.2 ANSI X9.17 Psuedo Random Number Generation

ANSI X9.17 specifies one of the strongest PRNGs currently available [ABA85]. A num-
ber of applications employ this technique, including financial security applications and PGP.

This method generates a sequence of random keys as follows:

e Input: Two pseudo random inputs to drive the generator. One is a 64-bit representa-
tion of the current date and time, DT}, which is updated on each number generation.
The other is a 64-bit seed value, 5;, which is initialized to some arbitrary value and

updated during the generation process.
o Key: A secret encryption key, K, used only for random number generation.

e Output: The output is a 64-bit pseudo random number, R;, and a 64-bit seed value

for the next iteration, S;41.

If DES is the encryption algorithm used, and D FE Sk denotes DES encryption using ‘K’ as

the key, R; (which is derived as shown below) can be used as a key.

R; = DESK[DESK[DT; ¢ SZ]]

Si-}—l = DESK[DESK[DT; ¢ RZ]]

3.3 Key Length

The degree of protection obtained by encryption depends on the quality of the cryp-
tosystem, the reliability of its implementation, and the total number of possible keys that
can be used to encrypt the information. A symmetric-key algorithm is considered strong
if there is no “shortcut” that allows the opponent to recover the plaintext without using
brute force to test keys until the correct one is found; and if the number of possible keys is
sufficiently large to make such an attack infeasible [BDR*95].

There is no definitive way to examine a cipher and determine whether an easier alterna-

tive than brute force attack exists to break the cryptosystem. However, most of the popular

67

encryption algorithms have been extensively studied in public literaturel’ (notably DES)
and are widely believed to be of high quality. Thus the length of the key can be used to
estimate the upper bound on the system’s strength.

Current cryptography uses symmetric-key cryptosystems for encrypting data and public-
key cryptosystems to manage the keys used by symmetric systems. If an application uses
both symmetric and public-key cryptography, the key lengths for each type of cryptography
should be chosen so that it is equally difficult to attack the system via each mechanism. The
strength of today’s public-key encryption algorithms are based on the conjectured difficulty
to factor large numbers that are the product of two large primes. Breaking these algorithms
do not involve trying every possible key; instead it involves trying to factor the large number
into its constituent primes. Mathematical techniques have evolved to make public key
cryptosystems subject to shortcut attacks and hence such systems must use keys much
bigger than the lengths used in symmetric-key algorithms.

The optimal key length for encrypting data varies from application to application. The
following factors should be considered while deciding the strength of the encryption required
for an application.

e The value of the data to be protected.

e The period for which the data should be protected.

e The resources available to potential adversaries who want access to the secret data.

Studies by Blaze et al., indicate that modest increases in computational cost can produce
vast increases in security. Encrypting information using a symmetric cipher very securely
(e.g., with 128-bit keys) typically does not require a lot more computing than encrypting
it weakly (e.g. with 40-bit keys). They point out that there is no practical or economic
reason to design hardware and software to provide differing levels of encryption for different
messages, and that the most prudent approach would be to use the strongest encryption

required for any information that is stored or transmitted by a secure system [BDRT95].

1 Peer-review is essential to weed out any hidden flaws in a cryptographic algorithm.

68

The Blaze study recommends using a minimum key-length of 90 bits to make brute-force
attacks on symmetric cryptography infeasible.

Table 3.1 lists the average time taken to crack keys of various lengths using hardware
costing $100,000 in 1995. This time decreases linearly with respect to increases in the cost

of the hardware used for brute force cracking.

Table 3.1: Estimates for a brute-force attack on symmetric cryptosystems
using hardware costing $100K in 1995. Source: [Sch96]

Key Length Time
40 2 seconds
56 35 hours
64 1 year
80 70,000 years
112 10'* years
128 1019 years

3.4 Big-Number Libraries

Public-key cryptosystems (§ 2.1.2) are either based on the difficulty of factoring large
numbers that are the product of two large primes (e.g., RSA) or on the difficulty of cal-
culating discrete logarithms in a large finite field (e.g., Diffie-Hellman). If these numbers
are too small, such systems can be broken. Today’s dominant public-key cryptosystems
use numbers whose size ranges from 512 bits to 2048 bits. Since standard hardware on
current computers do not support more than 64 bits of integer precision, there exists a
need for mathematical software libraries which facilitate the use of multiple-precision (and
sometimes infinitely extendable) integers.

A multiple-precision (MP) library generally consists of routines to manipulate integer,
rational and natural numbers, including functions to initialize and allocate space for MP
variables; to perform standard arithmetic operations on these variables; and to free the

dynamic space used by these variables after use. The limit of the precision is set by the

69

dynamic memory available in the computer.

There are a number of publicly available implementations of MP libraries. In this
research, the GNU MP library'? was used. The GNU MP library is compatible with the
MP library available on many BSD derived UNIX systems. This library was used to generate

the random numbers required in this research (§ 4.2.7).

3.5 Encryption/Authentication Performance

The encryption of data-streams in a distributed application will degrade performance
since it involves additional computation. To quantify the effects of encryption, a number
of performance tests were constructed. The compiler used was gcc, and optimization was
enabled with a “-O” flag. The Sun SPARCHs used in most of the tests were running
SunOS 4.1.4 and had 96MB main memory. The tests were conducted on a moderately busy
Ethernet (10 MBit/sec) segment (the Computer Science department). In order to reduce
the effects from extraneous factors, the tests were carried out in the late evening (after 10:00

PM) when the network traffic is likely to be less.

3.5.1 Comparison of DES Operating in Different Cipher Modes

In this test, DES was run in the four different operating modes: ECB, CBC, CFB and
OFB!'3. This test was carried out to find out how the DES performed in different modes.
The same test was run a number of machines, with different architectures, and running
different operating systems!4. Repeated encryptions were carried out on a 8192-byte string
to measure the performance of different DES modes. The block size used for ECB and CBC

modes is 64 bits. For the CFB mode, encryption was carried out both 8 bits and 64 bits at

'2This package is available for ftp from any of the usual GNU ftp-sites.

'3 Using Eric Young’s 1ibdes package.

" The performance of DES on the different platforms should not be compared with one another since the
machine-architectures and operating systems used for this test are different. The goal of this test is to show
that encryption speeds with DES in CBC or CFB mode, with the same block size, have similar performance.

70

a time. For the OFB mode, encryption was carried out 8 bits at a time.

It can be noted from Figure 3.1 that the speeds for 64-bit CBC and 64-bit CFB encryp-
tion are comparable. This is in agreement Schneier’s studies on symmetric ciphers [Sch96]
where he reports that encryption in different modes for a symmetric cipher are comparable
if the number of bits encrypted at a time are the same. This result is relevant in this

research because the IDEA implementation used in this research encrypts 64 bits at a time

in CFB mode, whereas DES is used in 64-bit CBC mode.

plain bcopy() for the same data lengths. To get a feel for the relative costs of encryption
and authentication'® the speed of a MD5+bcopy is also plotted on the same figure (see
Figure 3.2). Throughput was computed by dividing the total amount of the data processed
(i.e., encrypted/hashed), for each message size, by the time taken. Since the speed of beopy()
is orders of magnitude faster than that of encryption algorithms, the graph is plotted with

both axes set to logarithmic (base = 10) scale.

100000 —

g 10000 — =— bcopy
v —v— md5+bcopy
= —e— RC4
2 —&a— DES
S —eo— IDEA
3 —x— 3-DES
=
(o 1000

T I T T T T 1 rrr I Ijvl T T 1T 11T I T T T T 7Iﬁll T I

10 100 1000 10000

M essage Size (Bytes)

Figure 3.2: Encryption/Hashing performance within a process

' Message authentication is usually carried out using secure one-way hash functions like MD5.

72

3.5.3 UDP Throughput Performance of Encryption Algorithms

In this test, the throughput performance of different encryption algorithms for messages
being sent between two hosts using UDP was measured!”. In order to avoid having to
synchronize the clocks of the two hosts or to approximate the offset, messages are sent
round-trip, and the total time difference is divided in half. The timing is carried out only
on one of the hosts with the assumption that messages should take roughly the same amount
of time to go in each direction. To factor in the costs for encryption, messages are encrypted
on one host and the ciphertext is sent to the other host. At the remote side, the message is
decrypted and the plaintext is sent back. As expected, the UDP performance between two

hosts degrades when messages are encrypted (see Figure 3.3).

800

600 —
E — = NONE
= —a&— DES
‘g 400 —»— 3-DES
_% —e— IDEA
8 —e— RC4
=

|_

3
|

O I T I T I T I T I 1
0 2000 4000 6000 8000
M essage Size (Bytes)

Figure 3.3: UDP throughput performance for different encryption algorithms

TUDP is the transport protocol used by PVM for pvmd-pvmd communication.

73

Chapter 4

Implementation of Secure PVM

In order to get a better understanding of the design tradeoffs involved in secure dis-
tributed applications, this research focussed on extending the Parallel Virtual Machine
(PVM) to include support for cryptographic authentication, data integrity and encryption.
This chapter first introduces relevant PVM concepts and then describes the extensions
made to enhance PVM’s security. The last section reports the results from performance

tests carried out on the modified version of PVM.

4.1 Parallel Virtual Machine (PVM)

PVM is a message-passing system that permits a network of heterogeneous computers
to work in parallel in solving both scientific and commercial applications. PVM is called a
“virtual” machine since it joins physically separate and architecturally different machines
over a network (LAN or WAN). It functions like a “loosely-coupled” distributed operating
system, but runs on top of the existing operating system (e.g., UNIX). In order to be
highly portable, PVM uses the file-system and memory-management services provided by
the underlying operating system. Manchek’s thesis [Man94] is the authoritative reference

for the design and implementation of PVM Version 3. The PVM User’s Guide [GBDT94]

74

is another useful source for information about PVM.

The PVM system consists of two parts. The first part is a daemon process, called pvmd,
that resides on all the computers (hosts) making up the virtual machine. When a user
wants to run a PVM application, he first creates a virtual machine by starting up PVM.
This starts a pvmd process on each of the member hosts in the virtual machine. The pvmd

serves as a message router and controller (see Figure 4.1); it provides a point of contact,

console

master &-

Unix\domain
host sockets
\7
Unix#omain
socKets «

UDP P &

socket ¥
pvmd 7‘ pvmd
master ===
N O e L _ . save

\ 7

/—\ ' [UDP save
/

\ socket host

pvmd
slave
<

Unix domain
slave sockets
host

Figure 4.1: Partial anatomy of PVM

authentication, process control, and fault detection. The first pvmd (started by hand) is
designated as the master, while the others (started by the master) are called slaves. Only
the master can add or delete slaves from the virtual machine.

The second part of the PVM system is a library of routines (libpvm) that allows a

75

task! to interface with the pvmd and other tasks. libpvm contains functions for packing
and unpacking messages, and functions to perform PVM syscalls by using the message
functions to send service requests to the pvmd.

PVM daemons communicate with each other through UDP sockets. A task talks to its
local pvmd and other tasks through TCP sockets. UDP cannot be used for such commu-
nications since tasks cannot be interrupted while computing to perform I/0?. In order to
improve latency and transfer rates, PVM 3.3 introduced the use of UNIX-domain stream
sockets as an alternative to TCP for local communication. If enabled at compile time,
stream sockets are used between the pvmd and tasks as well as tasks on the same host

[Man94].

4.2 PVM Extensions for Enhanced Security

In this research, only security enhancements for inter-host communication were consid-
ered. This is because security in intra-host communication is associated closely with the
authority of root on each machine and can be subverted by anyone with superuser privileges
on the machine. However, some of the programming hooks provided for inter-host security
can also be used for enhancing the security of intra-host communications (§ 4.2.4).

Due to known weaknesses in the standard protocols (rexec and rsh) used for starting
slave pvmds on a host [CERT94] [CERT95], this research proposes using the Kerberos
version of rsh or new protocols like SSH or STEL for securely spawning processes on a
remote host. In order to set up secure communication among the hosts belonging to the
virtual machine, a secret PVM session key needs to be established among the hosts. This
secret key is generated on the master pvmd and distributed to each slave by means of a

Diffie-Hellman (DH) key exchange®. The slave startup protocol was extended to accomplish

! A task is a unit of computation in PVM analogous to a UNIX process.

2UDP can lose packets even within a host, requiring retry (with timers) at both ends.

*Instead of Diffie-Hellman, public key mechanisms like the RSA implementation in PGP can also be used.
This approach would require access to the PVM user’s PGP key-rings on each of the participating hosts.

76

the DH key exchange.

The user can request secure communication either while starting PVM (i.e., at the
command-line), or selectively enable secure communication on a per-message basis (i.e., by
routines in 1ibpvm). Regardless of the level of security chosen, the secret PVM session key
is always passed on to the slave during daemon startup.

For encryption, the user can choose from secret-key algorithms like DES, 3-DES, IDEA,
and RC4. For authentication and data integrity, the MD5 message digest algorithm is used.
By using a modular cryptographic API*, new algorithms can easily be added in the future.
New fields were added to existing PVM data-structures to pass on cryptographic security
related information among the participating hosts in the virtual machine.

The extensions were made to PVM release 3.3.9, which was the latest one available when
work was started on this project. The following subsections describe the extensions made

to standard PVM for enhanced security.

4.2.1 Starting Slave Pvimmds

The first step involved in adding a host to the virtual machine is to start a slave pvmd
on that host. The goal is to get a process running on the new host, with enough identity to
let it be fully configured and added as a peer. The standard PVM implementation provides

three mechanisms to start a slave pvmd.
e rexec
e rsh
e manual startup

From a security viewpoint, the use of rexec is no longer feasible to start a slave pvmd,

since rexec requires the user’s password to be sent in the clear over the network to the

“Based on the SSH distribution.

77

host on which the slave pvmd is being started. With “password-sniffing” attacks becoming
very common [CERT94], it would be quite easy for an attacker to capture the PVM user’s
password if rexec is used.

In the last few years, there has been a large number of attacks (e.g., source routing
attacks) on the rsh protocol [Bel89]. In order to contain this risk, a number of sites
are disabling the use of Berkeley-rsh to spawn processes on a remote host. However, a
mechanism for spawning processes on a remote host without being prompted for a password
is still quite attractive. The Kerberos version of rsh offers a reasonable solution to this
problem by modifying the rsh protocol to take advantage of the Kerberos’s authentication
infrastructure. Kerberized-rsh is a drop-in replacement for the Berkeley-rsh and eliminates
most of the risks involved with using the rsh protocol for remote process initiation. If the
slave pvmds need to be started using rsh, the Kerberized version of the rsh protocol should
be used.

The manual startup option allows the user to log on to a remote host and start the pvmd
by hand, and to type in the configuration. One-time password mechanisms like S/Key (§
2.4.4) should be used to eliminate the risk from “password-sniffing” attacks. New protocols

like SSH and STEL (§ 2.4.2) can also be used to securely start slave pvmds.

4.2.2 Key Distribution

Prior to secure communication between the hosts belonging to the virtual machine, a
secret session key needs to be established among the hosts. The secret PVM session key is
generated (§ 4.2.7) on the host running the master pvmd. The master pvmd distributes the

PVM session key to each slave pvmd as follows:

1. While starting up a new slave pvmd, the master pvmd initiates a 1024-bit modulo
Diffie-Hellman key exchange (§ 2.1.2.2) with the slave pvmd; to generate a shared

secret key, DHy.,,, between the master and slave.

78

2. The master pvmd encrypts the session key using 3-DES with the D Hj.,, shared with

the slave pvmd; and sends the encrypted session key to the slave.
3. The slave-pvmd; decrypts the encrypted session key using its copy of DHp.y,.

The Diffie-Hellman (DH) key exchange requires each participating entity to exchange
their public keys with each other. The slave pvmd startup protocol was extended to ac-
complish this exchange. When each pvmd (master or slave) is started up, it generates a
public/private key-pair to be used for the DH key exchange®. The DH public keys exchanged
between the master and slave pvmds are not authenticated. This makes it theoretically pos-
sible for an adversary to mount an active attack (man-in-the-middle attack, § 2.1.2.2) on
the DH key exchange protocol. However, such attacks are not trivial to mount®; so there
is still improved security with respect to standard PVM. Since messages are encrypted and
authenticated in secure PVM, and the master pvmd will reject forged messages for starting
up a new slave. This makes it more difficult for an intruder to mount a man-in-the middle
attack on the secure PVM DH key exchange.

Figure 4.2 shows a host being added to the virtual machine”. A task calls
pvm_addhosts(), to send a request to its pvmd, which in turn sends a DM_ADD message
to the master (possibly itself). The master pvmd creates a new host table entry for each
host requested, looks up the IP addresses and sets the options from the host file entries
or defaults. The host descriptors are kept in a waitc_add structure (attached to a wait
context®) and are not yet added to the host table. The master forks the pvmd’, passing it
a list of hosts and commands to execute?. The pvmd’ uses rsh or manual startup to start

each pvmd, pass it parameters, and gets configuration data back from the newly started

The base and the modulos for the DH exchange are constant and are “hard-coded” in this
implementation.

5Private communication with Randal Atkinson, rja@cisco.com (Jan 9, 1996).

"The dotted lines indicate the new messages added to the standard PVM slave startup protocol.

#Pvmds use a wait context (waitc) to hold state when a thread of operation must be interrupted.

®The shadow pvmd, pvmd’, is a process which runs on the master host and is used by the master to start
new slave pvmds.

79

slave.

Time

slave writes its configuration on standard output, then waits for an EOF from the pvmd’
and disconnects.
configuration from the master pvmd. If it is not configured within five minutes (parameter
DDBAILTIME), it assumes that there is something amiss with the master and quits. The
protocol revision (parameter DDPROTOCOL) of the slave pvmd must match that of the master.

This number is incremented whenever a change in the protocol makes its incompatible with

Task (0n2) Pvmd 2 Pvmd 1(master) | Pvmd | Pvmd3 (new)
pvm_addhosts() | |
| |
N 1 |
tm_addhost() \ ! !
| |
> dm_add() | |
| |
| |
| |
| |
I slave_config()
/
q @ dm_Startack() -
> dm_master_pubkey()
dm_slconf()
dm
dm_htupd()
dm |Atupd()
dm_sesskey()
= dnht
dm_sesskeyack() <

The addresses of the master and slave pvmds are passed on the command line. The

£
dm_hteemmit() -

dm_addack() ¥

A

dm_htcommit()

Figure 4.2: Timeline of key-exchange operation

The slave runs on probationary status until it receives the rest of its

80

the previous version'?. When several hosts are added at once, startup is done in parallel'!.
The pvmd’ sends the data (or errors) in a DM_STARTACK message to the master pvmd, which
completes the host descriptors held in the wait context.

After the slaves are started, the master sends a DI_MASTER PUBKEY message to each slave.
The master also sends each slave a DM_SLCONF message to set parameters not included in
the startup protocol. It then broadcasts a DM_HTUPD message to all new and existing slaves.

On receiving the DM_MASTER PUBKEY message, the slave computes its copy of the Diffie-
Hellman (DH) shared secret key using its private key and the master’s public key. The slave
then sends its public key to the master using a DM_SLAVE _PUBKEY message. Upon receiving
the DM_HTUPD message, each slave knows the configuration of the new virtual machine.

On receiving the DM_SLAVE PUBKEY from a slave, the master computes the DH key shared
with this slave. It then encrypts the PVM session key with the DH key using 3-DES and
sends the encrypted session key to the slave in a DM_SESSKEY message. On receiving the
DM_SESSKEY message, the slave extracts the PVM session key from it. It then informs the
receipt of the PVM session key by sending the master a DM_SESSKEYACK message.

The master waits for an acknowledging DM_SESSKEYACK message {rom each newly started
slave, and then broadcasts a DM_HTCOMMIT message, shifting all pvimds to the new host table.

Finally, the master sends a DM_ADDACK reply to the original request, giving the host IDs.

4.2.3 PVM messages

The pvmd and libpvm use the same message header (see Figure 4.3). Code is an integer
tag which specifies the message type. Since libpvm can pack messages in different formats,
it makes use of the Fncoding field to specify the encoding style of the message. The pvmd
always sets the Encoding field to use foo encoding. The pvmds use the Wait Context field

to specify the wait ID (if any) of the waitc associated with the message. The Checksum

1The DDPROTOCOL value was incremented while modifying code for this research. This facilitates the
detection of pvmd versions without security extensions attempting to join the virtual machine configuration.
1PVM can initiate the startup of five slaves concurrently.

81

field is reserved for future use. No modifications were made to the message header in secure

PVM.
Byte O 1 2 3
0 Code
4 Encoding
8 Wait Context 1D
12 (reserved for checksum)

Figure 4.3: PVM Message header

PVM daemons communicate with one another through UDP sockets. UDP is an unre-
liable delivery service which can lose, duplicate, or reorder packets. An acknowledgement
and retry mechanism is used by PVM to provide a reliable delivery service over UDP. UDP
also limits packet length, so PVM fragments long messages. Messages are sent in one or
more fragments, each with its own fragment header. The message header is at the beginning
of the first fragment.

Each message fragment is sent in a separate UDP packet. In order to re-assemble packets
back into a PVM message at the receiving pvmd, each packet has a packet header with the
requisite information (see Figure 4.4). Multi-byte values are sent “most significant byte

first”, i.e., in (Internet) network byte order.

Byte 0 1 2 3
0 Destination TID
4 Source TID
8 Sequence Number Ack Number
x|=z|E|= (s Cioh .
12 CEISIBIR ipher Padding Auth
16 One-Way Hash
: of Packet Data
28

Figure 4.4: Pvmd-Pvmd packet header for secure PVM

82

The source and destination fields hold the TIDs of the true source and final destination of
the packet, regardless of the route it takes. Sequence and acknowledgement numbers start at
1 and increment to 65535, and then wrap to zero. The Flag field conveys information about
the packet like whether it is the first/last fragment of the message (SOM/EOM), whether
any data is contained in the packet (DAT), whether the packet is an acknowledgment
(ACK), or whether a pvmd is closing down the connection (FIN).

In order to pass on cryptographic security related information among the pvmds, a few
new fields were added to the packet header. The Cipher field is used by the pvmd to specify
the algorithm used to encrypt the data (0 means unencrypted) contained in the packet. If
the encryption algorithm is block-oriented, the data will have to be padded to a multiple of
the block size before being encrypted. The Padding field is used to convey the size of the
padding (in bytes) present in the encrypted data, so that the receiving pvmd can correctly
extract the data from the encrypted payload. The Awuth field is used by the pvmd to indicate
whether the data in the packet is authenticated using a one-way hash function (0 indicates
un-authenticated). The last 16 bytes of the packet header are used to store the one-way

hash of the data, if the packet is being authenticated.

4.2.4 Security Options available to the PVM user

The PVM wuser can either choose enhanced security services at daemon startup time or
selectively enable them for any specific message sent between PVM hosts. He can choose

from three different levels of security. They are
1. Encryption: The user is assured of message privacy and integrity.
2. Authentication: The user is assured of message integrity.

3. Default: The user gets access to the standard PVM; i.e., services without crypto-

graphic encryption/authentication support.

83

While starting PVM, the ‘-e’ flag can be used to specify the encryption algorithm and
the ‘-a’ flag can be used to specify the one-way hash function to be used for authentication.

For example,

1. Start PVM with DES encryption,
pvim -edes

2. Start PVM with MD5 authentication,
pvim -amd5

Since there is a performance cost associated with the encryption of messages, the user
may choose to encrypt only essential messages. Support for this requirement is provided
by overloading the “encoding format” parameter!? to pvm mkbuf () (or pvm_initsend()'?).

Table 4.1 lists the possible values for the encoding format.

Table 4.1: Encoding formats used in libpvm

Encoding
PvmDataDefault standard PVM
PvmDataRaw standard PVM
PvmDatalnPlace standard PVM
PvmDataFoo standard PVM

PvmDataDefault_CipherXXX newly added
PvmDataRaw_CipherXXX newly added
PvmDatalnPlace_CipherXXX newly added
PvmDataFoo_CipherXXX newly added

7 where XXX stands for DES/3DES/IDEA/RC4

For example, to send a message which needs to be encrypted using DES, a PVM programmer

would use the following code segment.

strcpy(buffer, "this is a secret message ");
bufid = pvm_initsend(PvmDataDefault_CipherDES);

12 ibpvm provides functions to pack all primitive data types into a message. When creating a new message,
the encoder set is determined by the “encoding format” parameter to pvmmkbuf ().
Bpym_initsend () invokes pvm_mkbuf ().

84

info = pvm_pkstr(buffer);

msgtag = 3 ;

info = pvm_send(tid, msgtag);

When pvm_send() gets invoked, it checks to see if the message needs to be encrypted. If
s0, it marks all the fragments in the message for encryption by the local pvmd. When the
local pvmd receives a message from 1libpvm, it checks the encryption field in the message
fragment and encrypts the data accordingly. Only messages destined for remote hosts get
encrypted (§ 4.2).

If the programmer has access to his own crypto-library and only needs access to a key
“shared” among all the PVM hosts, he can invoke pvm_getsesskey() to get access to the
shared PVM session key. This function sends a TM_GETSESSKEY message to the local pvmd
and retrieves the PVM session key. The user can then use this key to encrypt the data and
send the encrypted data opaquely across to the remote PVM host. At the remote end, his
application can extract the PVM session key from its pvmd in the same way and use it to
retrieve the encrypted data. This feature could be used to enhance the security of PVM
direct TCP connections (i.e. , PvmRouteDirect) by using the PVM session key to encrypt

and opaquely send data across to a remote task.

4.2.5 Authentication

Secure one-way hash functions are used to facilitate the authentication of data going
across the network. The PVM packet header was extended by 16 bytes to include a 128-bit
message digest of the packet data. The pvmd at the remote host which receives the packet
computes the message digest from the relevant fields' in the packet and compares it with
the message-digest which was included in the incoming packet. If they match, the remote
pvmd is assured that the packet is authentic.

If authentication is requested by the user explicitly or implicitly (§ 4.2.6), netoutput ()

M Currently the fields that are hashed include the source task-id, the destination task-id, the packet
sequence number and the packet data.

85

checks the pk_authtype field in the packet, and invokes auth hash() to generate a message
digest of the packet data (currently, MD5 is the only one-way hash function supported). The
message digest is calculated by auth hash() as specified in the keyed-MD5 RFC [MS95].

The form of the authenticated message is

[< key >< keyfill >< data >< key >< M D5fill >]

The message digest is generated as follows.

1. The secret authentication key is padded with zeroes to the next 512-bit boundary.

2. The “filled” key is concatenated with the relevant fields of the packet structure (struct
pkt) and concatenated with the original session key again. These fields include the
source and destination task-ids, the packet sequence number, and the data contained

in the packet.

3. A trailing pad with length to the next 512-bit boundary for the entire message is

added by MD5 itself.

The PVM session key, shared by all the pvmds, is used as the key while computing the
message digest.

netoutput () incorporates the message-digest generated by auth hash() into the packet
header, sets the Auth field, and adds the packet to the send-queue for the remote destination.
On receiving a packet, netinput () examines the packet header to check if the Auth field is
set. If so, it invokes auth verify() to authenticate the packet. auth verify() computes
the message digest in the same way as auth hash(), and checks if it matches the message
digest included in the incoming packet. If they do not match, the packet is considered to
be a bogus one and dropped after logging it to the PVM log file. Message replay attacks
can be detected because the packet sequence number is also hashed in while generating the
message digest. Duplicate packets are logged to the PVM log file and dropped without

further processing.

86

4.2.6 Encryption

Secret-key encryption is used to ensure the privacy of messages sent across the net-
work. The PVM session key, shared among all the pvmds, is used as the key for encryp-
tion/decryption. To facilitate the use of different algorithms for encryption, a modular
cryptographic API is used. This API implementation'® currently supports DES, 3-DES,
IDEA and RC-4.

The encryption/decryption of data is handled on a per-packet basis. If the encryp-
tion field is set in struct pkt, the data portion of the packet is encrypted before the
packet is queued for a remote-destination'®. netoutput() checks the pk_ctype field in
the packet structure to determine the encryption algorithm being used. It then invokes
encrypt_packet() to encrypt the data contained in the packet. Before encrypting the
data, encrypt_packet () pads the data to a multiple of the block-size used by the encryp-
tion algorithm. The Padding field in the packet header (see Figure 4.4) is used to indicate
the amount of padding used.

On receiving a packet from a remote pvmd, netinput () inspects it to check if the payload
is encrypted. If so, it invokes decrypt_packet() to recover the data. After decrypting the
data, the Padding field is checked to see if data was padded to a multiple of the block-size
prior to encryption and only the relevant portion is extracted. netinput() then sends an
acknowledgment to the sending pvmd to indicate proper receipt of the packet and adds the
packet to the reordering queue for further processing by netinpkt ().

If encryption is chosen, authentication is also implicitly enabled for sending messages
between pvmds. This is because each block of ciphertext corresponds to some block of
plaintext. Since the receiving host needs to know that the encrypted message is coming

from an authentic source, the data also needs to be authenticated.

1>Based on SSH’s cipher API.

'6Packet headers cannot be encrypted since the pvmds need to inspect them to make routing decisions.

87

4.2.7 PVM Key Generation

PVM uses the Diffie-Hellman key exchange to distribute the secret session key among all
the pvmds (§ 4.2.2). For this purpose, each slave pvmd generates a public/private key-pair,
and exchanges public keys with the master pvmd during startup time. The public/private
key-pairs and the PVM session key used for securing pvmd-pvmd communication are ob-
tained via a pseudo-random number generator'” implemented using the GNU Multiple-
Precision (GMP) package.

In order to achieve better performance, entropy is collected into a buffer from readily
available sources on the local machine. These sources include the current system time,
the host name and operating system version(i.e., the output of uname()), the process and
group-ids’, the current working directory, and the access/create/modify times of frequently
changing files. Other candidates for “entropy-sources” are the output of UNIX utilities
like netstat, vmstat, pstat, iostat etc!®. This buffer is hashed using MD5 to generate
a 16-byte value. This MD5 hash is repeatedly concatenated to generate a 512-byte string
which is then encrypted using 3-DES (used as a mixing function) to distill out a reasonably
random string.

The PVM session key is generated during the startup handshake with the first slave
pvmd connecting back to the master. Prior to generating the PVM session key, the Diffie-
Hellman key shared between the master pvmd and the first slave pvmd connecting to the

master is also used to seed the random number generating routines.

4.3 PVM and Kerberos

During the initial stages of this research, the integration of PVM with Kerberos was

investigated. For this purpose, a Kerberos Version 5 Beta 5 KDC was installed along with

17Based on STEL’s method for random number generation.
18]t would have been great if something like Linux’s /dev/random were available on all UNIX platforms.

88

the Kerberized versions of the Berkeley ‘r’ commands!'®.

The PVM design, however, does not fit cleanly into the Kerberos model. In the Kerberos
model, the KDC shares a secret key with each Kerberized service on a host. This requires the
existence of a registered principal on each host?. In PVM, multiple users can simultaneously
run their own isolated virtual machines with the pvmds running on any of the non-reserved
ports on a host. This design was chosen in order to allow an user to install PVM without
having any special (super-user) privileges on the machine. Due to this, a single trusted
PVM principal cannot be used to function as the pvmd for all PVM users in a host.

One could perhaps extend the forwardable lickel concept in Kerberos V5 to create a
session key shared among the pvmds. This shared session key could then be used to en-
crypt/authenticate messages sent between hosts. However, forwardable tickets do not func-

tion correctly in the Kerberos V5 Beta5 distribution?! and hence this could not be tested.

4.4 Performance

All the PVM tests were carried out on Sun SPARCH’s running SunOS 4.1.4 and con-
taining 96MB of main memory. Experiments were carried out to determine the message
passing performance of secure PVM relative to standard PVM 3.3.9. All machines were
connected to the same Ethernet segment; packets were routed between hosts in a single hop

without being forwarded through any routers.

4.4.1 Comparison of Pvind Slave Startup Times

The slave pvmd startup protocol (§ 4.2.2) was extended to do the Diffie-Hellman (DH)
handshake and to distribute the PVM secret session key among all the pvmds. Figure 4.5

shows the time taken to start up one to eight slaves in parallel. Two sets of startup times,

¥Kerberos V5 Beta5 was latest release available when this research started.
20This suggests the need for a well-known PVM port on each machine.
21Joe Ramus (ramus@nersc.gov), private email.

89

one for standard PVM and one for PVM with security extensions are plotted side by side.

40
30
o 20_: —a— Secure PVM
3 7] —e— PVM-3.39
m -
£]
oo
10
0] T I T I T I T I T I
0 2 4 6 8 10

Number of dave pvmds concurrently started

Figure 4.5: Time taken to start 1-8 slave pvmds

It can be seen that the startup times in secure PVM increases with the increase in the
number of slaves added concurrently??. The factors contributing to the additional latency

when compared with standard PVM are

e Public/private key computation on the slave pvmd.
e DH key computation on the slave pvmd.
e DH key computation on the master pvmd.

e 3-DES encryption and distribution of the PVM session key by the master pvmd.

As the number of slave pvmds started concurrently increases, the DH key computation on

the master pvmd becomes the bottleneck.

22PVM can initiate the startup of five slave pvmds in parallel via rsh.

90

4.4.2 Comparison of PVM Throughput

Tests of throughput were run to find out the relative performance of different encryp-
tion/authentication algorithms used in secure PVM. The message-lengths were varied from
128 bytes to 4k bytes (the default PVM fragment size is 4kB). Figure 4.6 plots the band-
widths that can be achieved for traffic between two PVM hosts with standard PVM, secure
PVM with authentication enabled, and secure PVM with encryption enabled?3. In all the
cases, “default” routing is used (i.e., packets are routed via each hosts’s pvmd). In order
to avoid having to synchronize the clocks of the two hosts or to approximate the offset,
messages are sent round-trip, and the total time difference is divided in half. It can be ob-
served from Figure 4.6 that adding encryption/authentication extensions to PVM degrades

the throughput performance.

A program called timing.c is provided with the PVM 3.3.9 distribution to get an es-
timate of PVM performance on different platforms. This program sends messages with
lengths ranging from 100 bytes to 1 Mbytes from one PVM host to another. For each mes-
sage sent, the sending host gets an acknowledgement which is 4 bytes long from the receiving
host. The results from this test can also be used to get an estimate of the throughput per-
formance between two PVM hosts. Table 4.2 shows the results obtained from running this
program with standard PVM, secure PVM with authentication enabled, and secure PVM

with encryption enabled.

2*When encryption is turned on, authentication is implicitly enabled (§ 4.2.6).

91

600

8 400 -
= —&— pvm3.3.9
X o vV —w— pvm3.3.9(md5)
= e —e— pvm3.3.9(rc4+md5)
2 o —a— pvm3.3.9(des+md5)
S Y —e— pvm3.3.9(idea+md5)
S vl —+— pvm3.3.9(3des+md5)
£ 200 7
— Y
/v;':-,.- Ty
0 rrrrrrrrroT I rrrrrrrrroT I rr1rrrrrrrT I rr1rrrrrrrT
0 1000 2000 3000 4000
M essage Size (Bytes)

Figure 4.6: Comparison of throughput performance between two PVM hosts

Table 4.2: Results from timing.c

Message Size PVM | PVM(md5) | PVM(des+md5) | PVM(rcd4md5)
(bytes) (psec) (psec) (psec) (psec)

100 5,739 9,106 10,504 10,509

1000 6,668 10,627 16,804 13,458

10000 18,999 32,022 76,790 49,861
100000 | 147,219 276,958 677,735 427,962
1000000 | 1528,444 3113,104 6678,024 4346,369

92

Chapter 5

Summary and Recommendations

This research focussed on developing and evaluating various alternatives for enhancing
the security of distributed applications that execute over insecure networks. The use of
different encryption/authentication algorithms and their impact on the performance of dis-
tributed applications were studied by extending PVM to provide cryptographic support for
data privacy and integrity. Since security services based on cryptographic techniques require
the keys used for encryption/authentication to be distributed securely, various mechanisms
for key distribution were also investigated. The following sections describe how the research

issues identified in Section 1.1 are addressed in this research.

5.1 Research Summary

The design issues involved in adding security to a distributed application were discussed
in Section 2.3 and in Chapter 3. These include the choice of a good mechanism for key
distribution, the selection of a generic crypto-APIL, a reliable method for generating random
numbers, the choice of an optimal key-length, and the use of auxiliary libraries to perform
multiple-precision integer calculations. After an extensive survey of current literature and

the approaches adopted in existing applications to enhance security, this research attempted

93

to get a better understanding of the above issues by implementing security extensions to
PVM. These extensions were made to PVM release 3.3.9, which was the latest one available
when work was started on this project.

For inter-host user authentication, this research used existing mechanisms like Kerberos-
rsh and new protocols like SSH or STEL. The use of rexec was avoided since it involves
sending a cleartext user passwords across the network. For the PVM manual-startup option,
this research used one-time password mechanisms like S/Key or OPIE.

The user can request secure communication either while starting PVM (i.e., at the
command-line), or selectively enable secure communication on a per-message basis (i.e.,
by routines in libpvm). Regardless of the level of security chosen, the secret PVM session
key is always passed on to the slave during daemon startup. The PVM session key, shared
among all the pvmds, is used as the key for encryption/decryption.

The slave startup protocol was extended to include a public key exchange between the
master pvmd and the newly spawned slave pvmd. This exchange was used to generate a
shared secret key between the master pvmd and the slave using the Diffie-Hellman (DH) key
exchange mechanism (§ 2.1.2.2). Once the DH key is generated, the master pvmd encrypts
the PVM session key using the DH key and sends the encrypted session key to the slave. The
newly spawned slave pymd becomes a part of the virtual machine only after it acknowledges
receipt of the PVM session key. It was observed in this research that the slave startup time
increased almost linearly with the the number of slaves pvmds concurrently spawned. This
is because the master pvmd is involved in the Diffie-Hellman key computation with each
newly spawned slave, thereby “serializing” the concurrent spawning process'.

New fields were added to the pvmd-pvmd packet header in order to specify the encryption
algorithm, the amount of padding used (if any), the authentication algorithm and the hash

of the packet data. To facilitate the use of different algorithms for encryption, a modular

1Only the master sf pvind can add new slaves to the PVM system.

94

cryptographic API is used. This API implementation? currently supports DES, 3-DES,
IDEA and RC4. The MD5 message digest algorithm is used for message authentication
and to verify data integrity. By choosing secure PVM’s encryption services, the user is
assured of message privacy. He is also assured of the authenticity of the message since
selecting encryption also implicitly enables authentication (§ 4.2.6). If the user only requires
assurance of message authenticity, he can choose the “authentication-only” option. In either
of the above cases, replay-attacks can be detected because the packet’s sequence number is
included in the authentication hash of the packet data. Also, if encryption is enabled, an
attacker cannot send fake PVM messages to make PVM hosts execute arbitary commands?®.

This research needed access to random numbers to generate the public/private key
pairs for the DH key exchange and for the PVM session key. The GNU MP library was
used to perform the multiple-precision integer calculations required for generating the large
random numbers. These random numbers were generated by collecting entropy from readily
available sources on the local machine, and distilling this by using 3-DES as a mixing
function (§ 4.2.7). Provisions have been made to add additional entropy in a clean and easy
manner.

Since additional computation is involved, the encryption of a data stream in a distributed
application will degrade performance. To quantify the effects of encryption, a number of
performance tests were carried out as a part of this research. The results of these tests were

presented in Section 3.5 and Section 4.4.

5.2 Limitations

This implementation of secure PVM has several limitations. Some of these are due to
the fact that the security extensions are done at the application level. Others are intrinsic

to the current PVM design.

?Based on SSH’s cipher API.
®This is possible in standard PVM.

95

Since PVM is layered over the existing operating system, vulnerabilities in the operating
system implementation can be exploited to subvert the security of secure PVM. For example,
a malicious user with super-user access on a host which is a part of PVM can obtain the
PVM session key from the operating system kernel.

The transport mechanism used for pvmd-pvmd communication is UDP. It is much easier
to forge UDP packets than TCP packets, since there are no handshakes or sequence numbers
[CB94]. Due to this threat, sites using firewalls often drop all UDP packets arriving at non-
reserved ports (e.g., port numbers > 1024). Secure PVM (and standard PVM) will not
work with hosts behind firewalls having this policy.

To securely spawn slave pvmds, secure PVM uses Kerberized-rsh or new protocols like
SSH or STEL. In order to use Kerberized-rsh, a Kerberos infrastructure should already
exist. SSH and STEL also require system-administrator assistance for installation on a
machine. Another issue that needs to be considered is that SSH and STEL are still quite new
and have not undergone extensive public review. Bug-fixes to their implementations should
be promptly applied in order to prevent malicious users from exploiting newly discovered
security holes.

In the current design, the PVM session-key is passed on to the slave pvmd during daemon
startup. The encryption and authentication of PVM packets exchanged between hosts does
not begin until the slave pvmd acknowledges receipt of the PVM session key to the master.
Also, there is no provision to change the PVM session key during a PVM session.

Another limitation is that the Pvmd packet headers are sent unencrypted across the
network. This is because, the pvmds need to inspect the packet header for making routing
decisions. Also, the packet header specifies the algorithm used for encryption and the
amount of padding used. The pvmd needs access to this information to correctly decipher
the encrypted data. However, portions of the packet headers are part of the message

authentication code.

96

5.3 Future Work

In addition to inter-host communication via the pvmds on each host, PVM also supports
direct communication between tasks on different hosts. Direct routing allows tasks to ex-
change messages via TCP, avoiding the overhead of forwarding through the pvmds [Man94].
In this research, encryption support is not provided for direct task routing. Instead, tasks
on each host can obtain the PVM session key by sending a TM_GETSESSKEY message to
the local pvmd, and use this key to encrypt and opaquely send data across to a remote task.

In order to facilitate changing the encryption key during a PVM session, secure PVM
could have a key hierarchy as in SKIP (§ 2.4.1.2). A master (or key-encrypting) key could
be exchanged during slave startup, and a separate packet-encrypting key could be used
to encrypt individual packets. The packet-encrypting key would be encrypted using the
master key and sent in-band in the PVM packet. Since it is sent in-band, it will be possible
to change the key used for encrypting packet data during a PVM session.

By increasing the size of keys used for encryption, brute-force attacks on cryptosystems
can be made “theoretically” infeasible. However, if good random number generation tech-
niques are not used, attackers can exploit weaknesses in the key generation techniques to
reduce the search-space for brute force attacks. Operating systems which provide efficient
and easy access to randomness sources could help in generating sufficient entropy for seeding
pseudo random number generators.

There is a pressing need for implementations of standard security APIs which are fast
and suitable for use in distributed parallel applications. A high-performance library that
includes implementations of both standard and specialized confidentiality and integrity
mechanisms would be very useful to application developers.

The Internet community has recognized the need for having an integrated security frame-
work [Atk95¢c|. By providing security services at the lower levels of the network hierarchy,
ad-hoc application specific security solutions can be replaced by generic solutions. There

would be no need for a secure version of PVM, if the network (IP) layer provided support

97

for cryptographic security.

5.4 Legal Issues

Foreign accessibility to strong cryptography is considered to compromise communica-
tions intelligence. “According to the U.S. government, cryptography can be a munition”
[Sch96]. Most packages which include cryptographic solutions have export restrictions as-
sociated with them. So considerable care needs to be exercised while making software using
cryptographic algorithms publicly available.

Software and algorithms can be patented in the United States. A large number of public
and secret key algorithms are patented, though some of them can be used freely for non-
commercial purposes. Before incorporating cryptographic solutions into software packages,
the legal issues associated with using them should be carefully examined.

Due to these reasons, the distribution of secure PVM will have to be controlled. It is
likely that there will be two separate PVM distributions, one for standard PVM and the

other for secure PVM.

98

BIBLIOGRAPHY

Bibliography

[ABAS5]

[AP95]

[Ash95]

[Atk95a]

[Atk95b]

[Atk95c]

[BB95]

American Bankers Association. “American National Standard for Financial In-

stitution Key Management”, 1985.

Ashar Aziz and Martin Patterson. “Design and Implementation of SKIP”. In

INET 95, June 1995.

Ashar Aziz. “Simple Key Management for Internet Protocols”. Internet Draft -

Work in Progress, November 1995. URL: ftp://ds.internic.net/internet-drafts/.
R. Atkinson. “IP Authentication Header”. RFC 1826, August 1995.

R. Atkinson. “IP Encapsulating Security Payload (ESP)”. RFC 1827, August

1995.

R. Atkinson. “Security Architecture for the Internet Protocol”. RFC 1825, August

1995.

Matt Blaze and Steven Bellovin. “Session-Layer Encryption”. In The Fifth

USENIX Security Symposium, Salt Lake City, Utah, June 1995.

[BDRT95] Matt Blaze, Whitfield Diffie, Ronald Rivest, Bruce Schneier, Tsutomu Shimo-

mura, Eric Thompson, and Michael Wiener. “Minimal Key Lengths for Symmetric
Ciphers to Provide Adequate Commercial Security 7, November 1995. One-day

meeting organized by the Business Software Alliance in Chicago.

100

[Bel89]

[Bih93]

[Bir84]

[BM9O]

[BM92]

[BM93]

[BMO5]

[CBY4]

[C.C88a)

[C.C88b]

S. Bellovin. “Security Problems in the TCP /IP Protocol Suite”. Computer Com-

munications Review, Vol. 19, no. 2:32-48, April 19809.

E. Biham. “On the Applicability of Differential Cryptanalysis to Hash Functions”,

March 1993. Lecture at EIES Workshop on Cryptographic Hash Functions.

Andrew Birrell. “Implementing Remote Procedure Calls’. ACM Transactions on

Computer Systems, Vol. 2, n. 1:39-59, February 1984.

S. Bellovin and M. Merritt. “Limitations of the Kerberos Authentication System”.

Computer Communications Review, Vol. 20, no. 5:119-132, October 1990.

5.M. Bellovin and M. Merritt. “Encrypted Key Exchange”. In Proc. IEEFE Com-
puter Sociely Symposium on Research in Securily and Privacy, pages 72-84, May

1992.

5.M. Bellovin and M. Merritt. “Augmented Encrypted Key Exchange”. In Pro-
ceedings of the First ACM Conference on Computer and Communicalions Secu-

rily, pages 244-250, November 1993.

S. Bradner and A. Mankin. “The Recommendation for the IP Next Generation

Protocol”. RFC 1752, January 1995.

William Cheswick and Steven Bellovin. “Firewalls and Internet Securily” .

Addison-Wesley Publishing Company, 1994.

C.C.I.LT.T. “Data Communications Networks Directory: Recommendation

X.500”, December 1988.

C.C.LL'T.T. “The Directory Authentication Framework: Recommendation X.509”,

December 1988.

[CERT94] Computer Emergency Response Team. “Ongoing Network Monitoring Attacks”.

CERT Advisory: CA-94:01, February 1994. URL: http://www.cert.org.

101

[CERT95] Computer Emergency Response Team. “IP Spoofing Attacks and Hijacked

Terminal Connections”. CERT Advisory: CA-95:01, January 1995. URL:

http://www.cert.org.

[CERT96a] Computer Emergency Response Team. “BIND Version 4.9.3”. CERT Advisory:

CA-96:02, February 1996. URL: http://www.cert.org.

[CERT96b] Computer Emergency Response Team. “Corrupt Information from Network

[Col90]

[dBBY2]

[DH76]

[DH96]

[Dif88]

[Dou95]

[DP83]

Servers”. CERT Advisory: CA-96:04, February 1996. URL: http://www.cert.org.

Colin Tanson and Chris Mitchell. “Security Defects in C.C.I.T.T. Recommenda-

tion X.509”, December 1990.

B. den Boer and A. Bosselaers. “An Attack on the Last Two Rounds of MD4”.
In Advances in Cryptology —Crypto ’91 Proceedings, pages 194-203. Springer-

Verlag, 1992.

Whitfield Diffie and Martin Hellman. “New Directions in Cryptography”. IEFE

Transactions on Information Theory, Vol. 1T-22:644-654, November 1976.

S. Deering and R. Hinden. “Internet Protocol, Version 6 (IPv6) Specification”.

RFC 1883, January 1996.

W. Diffie. “First Ten Years of Public Key Cryptography”. In Proceedings of the

IFFE, May 1988.

Douglas Maughan and Mark Schertler. “Internet Security Association and Key
Management Protocol (ISAKMP)”. Internet Draft - Work in Progress, November

1995. URL: ftp://ds.internic.net/internet-drafts/.

D.W. Davies and G.L.P. Parkin. “The Average Size of the Key Stream in Out-

put Feedback Encipherment”. In Cryptography, Proceedings of the Workshop on

102

[DS81]

[ECS94]

[Fos95]

Cryplography, pages 263-279, Burg Feuerstein, Germany, 1983. Springer-Verlag.

March29 - April2.

D. Denning and G. Sacco. “Time stamps in Key Distribution Protocols”. Com-

munications of the ACM, Vol. 24, no. 8:533-536, August 1981.

D. Eastlake, S. Crocker, and J. Schiller. “Randommness Recommendations for

Security”. RFC 1750, December 1994.

lan Foster. “ZIPPER: A Secure Communication Toolkit for High Performance

NII Applications”, September 1995. Argonne National Laboratory.

[GBD194] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,

[GW96]

[Hal94]

[1B93]

[Jas93]

[Jon95]

and Vaidy Sunderam. “PVM - A Users’ Guide and Tutorial for Network Parallel

Computing” . The MIT Press, 1994.

lan Goldberg and David Wagner. “Randomness and the Netscape Browser”. Dr.

Dobb’s Journal, pages 66—70, January 1996.

Kara Hall. “The Implementation and Evaluation of Reliable IP Multicast”. Mas-

ter’s thesis, University of Tennessee, Knoxville, 1994.

John Ioannidis and Matt Blaze. “The Architecture and Implementation of
Network-Layer Security Under UNIX”. In The Fourth USENIX Security Sym-

posium, Santa Clara, California, October 1993.

Barry Jaspan. “GSS-API security for ONC-RPC”. In Proc. Symposium on Nel-
work and Distributed Systems Security, pages 144-151. IEEE Computer Society,

1993.

Laurent Joncheray. “A Simple Active Attack Against TCP”. In The Fifth

USENIX Security Symposium, Salt Lake City, Utah, June 1995.

103

[Kau93]

[Kha94]

[KN93]

[KNT94]

[KOOY5]

[KPS95]

[Lam81]

[Lin93]

[LMO1]

[Man94]

[Mer78]

C. Kaufman. “DASS: Distributed Authentication Security Service”. RFC 1507,

September 1993.
Raman Khanna. “Distributed Computing” . Prentice Hall, 1994.

J. Kohl and B. Neuman. “The The Kerberos Network Authentication Service

(V5)”. RFC 1510, October 1993.

J.T. Kohl, B.C. Neuman, and T.Y. Tso. “The Evolution of the Kerberos Authen-
tication System” . In Distributed Open Systems, pages 78-94. IEEE, Computer

Society Press, 1994.

Gene Kim, Hilarie Orman, and Sean OMalley. “Implementing a Secure rlogin
Environment”. In The Fifth USENIX Security Symposium, Salt Lake City, Utah,

June 1995.

Charlie Kaufman, Radia Perlman, and Mike Speciner. “Network Security: Private

Communication in a Public World”. Prentice Hall, 1995.

L. Lamport. “Password Authentication with Insecure Communication”. Commu-

nications of the ACM, Vol. 24(11), November 1981.

J. Linn. “Generic Security Service Application Program Interface”. RFC 1508,

September 1993.

X. Lai and J. Massey. “A Proposal for a New Block Encryption Standard”. In

Proceedings, FUROCRYPT ’90, pages 389-404. Springer-Verlag, 1991.

Robert J. Manchek. “Design and Implementation of PVM Version 3”7. Master’s

thesis, University of Tennessee, Knoxville, 1994.

Ralph C Merkle. “Secure Communications Over Insecure Channels”. Communi-

cations of the ACM, Vol. 21, n. 4:294-299, 1978.

104

[Mic88]

[MS95]

[Mul90]

[Neu95]

[NIS92]

[NIS93]

[NS78]

[Plu82]

[Pos81]
[Riv92a)]
[Riv92b]

[RSS84]

Sun Microsystems. “RPC: Remote Procedure Call Protocol specification version

2”7, RFC 1057, June 1988.

P. Metzger and W. Simpson. “IP Authentication using Keyed MD5”. RF(C 1828,

August 1995.
Sape Mullender. “Distributed Systems” . ACM Press, 1990.

Michael Neuman. “Monitoring and Controlling Suspicious Activity in Real-time
With IP-Watcher”. In Proceedings of the 11th Annual Computer Security Appli-

cations Conference, December 1995.

NIST. “The Digital Signature Standard, proposal and discussion”. Communica-

tions of the ACM, Vol. 35(7), July 1992.

NIST. “Secure Hash Algorithm”. Federal Information Processing Standard

(FIPS) Publication - 180, May 1993.

R. Needham and M. Schroeder. “Using Encryption for Authentication in Large
Networks of Computers”. Communications of the ACM, Vol. 21, no. 12:993-999,

December 1978.

David C. Plummer. “An Ethernet Address Resolution Protocol”. RFC 826,

November 1982.

J. Postel. “Internet Protocol”. RFC 791, September 1981.

R. Rivest. “The MD4 Message-Digest Algorithm”. RFC 1320, April 1992.
R. Rivest. “The MD5 Message-Digest Algorithm”. RFC 1321, April 1992.

R.L. Rivest and A. Shamir. “How To Expose An Eavesdropper”. Communications

of the ACM, Vol. 27, no. 4:393-395, April 1984.

105

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital

[Sch96]

[SHS93]

[SNSSS]

[Sta95]

[TA91]

[Tat95]

[Tea95]

[Tuc79]

[US 77]

Signatures and Public-Key Cryptosystems”. Communications of the ACM, Vol.

21, no. 2:120-126, February 1978.

Bruce Schneier. “Applied Cryptography” . John Wiley and Sons, Inc., second

edition, 1996.

David R. Safford, David K. Hess, and Douglas Lee Schales. “Secure RPC Au-
thentication (SRA) for TELNET and FTP”. In The Fourth USENIX Securily

Symposium, Sanla Clara, California, pages 63-67, October 1993.

J. Steiner, C. Neuman, and J. Schiller. “Kerberos: An Authentication Service
for Open Network Systems”. In Useniz Conference Proceedings, Dallas, Tezas,

February 1988.
William Stallings. “Network and Internetwork Securily” . Prentice Hall, 1995.

J.J. Tardo and L. Alagappan. “SPX: Global Authentication using Public Key Cer-
tificates”. In Proceedings of the 1991 IEEF Symposium on Security and Privacy,

pages 232-244, May 1991.

Tatu Ylonen. “The Secure Shell (SSH) Remote Login Protocol”. Internet Draft

- Work in Progress, November 1995. URL: http://www.cs.hut.fi/ssh.

NSA Cross Organization CAPI Team. “Security Service API: Cryptographic API

Recommendation”, June 1995.

W. Tuchman. “Hellman Presents No Shortcut Solutions to DES”. IEEF Spectrum,

July 1979.

US National Bureau of Standards. “Data Encryption Standard”. Federal Infor-

mation Processing Standard (FIPS) Publication - 46, January 1977.

106

[US 80]

[US 85]

[VTBY5]

[Wie93]

[Wil95]

[WL92]

[ZG95]

US National Bureau of Standards. “DES Modes of Operation”. Federal Informa-

tion Processing Standard (FIPS) Publication - 81, December 1980.

US National Bureau of Standards. “Computer Data Authentication”. Federal

Information Processing Standard (FIPS) Publication - 113, May 1985.

David Vincenzetti, Stefano Taino, and Fabio Bolognesi. “STEL: Secure TELnet”.

In The Fifth USENIX Securily Symposium, Salt Lake City, Ulah, June 1995.

M.J. Wiener. “Efficient DES Key Search”, August 1993. Presented at the rump

session of CRYPTO ’93.

William Simpson and Phillip Karn. “The Photuris Session Key Manage-
ment Protocol”. Internet Draft - Work in Progress, November 1995. URL:

ftp://ds.internic.net /internet-drafts/.

T. Woo and S. Lam. “Authentication for Distributed Systems”. Computer, Jan-

uary 1992.

Honbo Zhou and Al Geist. “Faster Message Passing in PVM”. In Proc. of the First
International Workshop on High Speed Network Computing (HiNet-95), Santa

Barbara, CA. IEEE Press, April 1995.

107

Vita

Nair Venugopal (Venu) was born in Trivandrum, India on May 30, 1969. After ini-
tial schooling in different Indian cities including Hyderabad, Bangalore, and Trivandrum,
he completed his high school education in June 1986. He graduated with a B.Tech. in
Computer Science from the College of Engineering, Trivandrum in December 1990. He
immediately started working for the National Center for Software Technology (NCST),
Bombay, India and continued to work with NCST till July 1993. A strong desire to see
the world brought him over to the United States of America where he joined the Masters
program in Computer Science at the University of Tennessee, Knoxville in Fall 1993. After
getting his M.S. he intends to head for Santa Clara, California to make sufficient money to

fund his future travel urges.

108

