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Abstract

An encryption method is presented with the novel property that publicly re�
vealing an encryption key does not thereby reveal the corresponding decryption
key� This has two important consequences�

�� Couriers or other secure means are not needed to transmit keys� since a
message can be enciphered using an encryption key publicly revealed by
the intended recipient� Only he can decipher the message� since only he
knows the corresponding decryption key�

�� A message can be �signed� using a privately held decryption key� Anyone
can verify this signature using the corresponding publicly revealed en�
cryption key� Signatures cannot be forged� and a signer cannot later deny
the validity of his signature� This has obvious applications in �electronic
mail� and �electronic funds transfer� systems�

A message is encrypted by representing it as a number M� raising M to a
publicly speci	ed power e� and then taking the remainder when the result is
divided by the publicly speci	ed product� n� of two large secret prime numbers
p and q� Decryption is similar
 only a di�erent� secret� power d is used� where
e � d � � �mod �p� � � �q � �� The security of the system rests in part on
the di�culty of factoring the published divisor� n�
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I Introduction

The era of �electronic mail� ���� may soon be upon us� we must ensure that two
important properties of the current �paper mail� system are preserved� 	a
 messages
are private� and 	b
 messages can be signed � We demonstrate in this paper how to
build these capabilities into an electronic mail system�

At the heart of our proposal is a new encryption method� This method provides
an implementation of a �publickey cryptosystem�� an elegant concept invented by
Di�e and Hellman ���� Their article motivated our research� since they presented
the concept but not any practical implementation of such a system� Readers familiar
with ��� may wish to skip directly to Section V for a description of our method�

II Public�Key Cryptosystems

In a �public key cryptosystem� each user places in a public �le an encryption proce
dure E� That is� the public �le is a directory giving the encryption procedure of each
user� The user keeps secret the details of his corresponding decryption procedure D�
These procedures have the following four properties�

	a
 Deciphering the enciphered form of a message M yields M � Formally�

D	E	M
 � M� 	�


	b
 Both E and D are easy to compute�

	c
 By publicly revealing E the user does not reveal an easy way to compute D�
This means that in practice only he can decrypt messages encrypted with E� or
compute D e�ciently�

	d
 If a message M is �rst deciphered and then enciphered� M is the result� For
mally�

E	D	M
 � M� 	�


An encryption 	or decryption
 procedure typically consists of a general method

and an encryption key� The general method� under control of the key� enciphers a
message M to obtain the enciphered form of the message� called the ciphertext C�
Everyone can use the same general method� the security of a given procedure will rest
on the security of the key� Revealing an encryption algorithm then means revealing
the key�
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When the user reveals E he reveals a very ine�cient method of computing D	C
�
testing all possible messages M until one such that E	M
 � C is found� If property
	c
 is satis�ed the number of such messages to test will be so large that this approach
is impractical�

A function E satisfying 	a
	c
 is a �trapdoor oneway function�� if it also satis�es
	d
 it is a �trapdoor oneway permutation�� Di�e and Hellman ��� introduced the
concept of trapdoor oneway functions but did not present any examples� These
functions are called �oneway� because they are easy to compute in one direction but
	apparently
 very di�cult to compute in the other direction� They are called �trap
door� functions since the inverse functions are in fact easy to compute once certain
private �trapdoor� information is known� A trapdoor oneway function which also
satis�es 	d
 must be a permutation� every message is the cipertext for some other
message and every ciphertext is itself a permissible message� 	The mapping is �one
toone� and �onto�
� Property 	d
 is needed only to implement �signatures��

The reader is encouraged to read Di�e and Hellman�s excellent article ��� for
further background� for elaboration of the concept of a publickey cryptosystem� and
for a discussion of other problems in the area of cryptography� The ways in which
a publickey cryptosystem can ensure privacy and enable �signatures� 	described in
Sections III and IV below
 are also due to Di�e and Hellman�

For our scenarios we suppose that A and B 	also known as Alice and Bob
 are
two users of a publickey cryptosystem� We will distinguish their encryption and
decryption procedures with subscripts� EA�DA� EB�DB�

III Privacy

Encryption is the standard means of rendering a communication private� The sender
enciphers each message before transmitting it to the receiver� The receiver 	but no
unauthorized person
 knows the appropriate deciphering function to apply to the
received message to obtain the original message� An eavesdropper who hears the
transmitted message hears only �garbage� 	the ciphertext
 which makes no sense to
him since he does not know how to decrypt it�

The large volume of personal and sensitive information currently held in comput
erized data banks and transmitted over telephone lines makes encryption increasingly
important� In recognition of the fact that e�cient� highquality encryption techniques
are very much needed but are in short supply� the National Bureau of Standards has
recently adopted a �Data Encryption Standard� ���� ���� developed at IBM� The new
standard does not have property 	c
� needed to implement a publickey cryptosystem�

All classical encryption methods 	including the NBS standard
 su�er from the
�key distribution problem�� The problem is that before a private communication can
begin� another private transaction is necessary to distribute corresponding encryption
and decryption keys to the sender and receiver� respectively� Typically a private
courier is used to carry a key from the sender to the receiver� Such a practice is not
feasible if an electronic mail system is to be rapid and inexpensive� A publickey
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cryptosystem needs no private couriers� the keys can be distributed over the insecure
communications channel�

How can Bob send a private message M to Alice in a publickey cryptosystem�
First� he retrieves EA from the public �le� Then he sends her the enciphered message
EA	M
� Alice deciphers the message by computing DA	EA	M

 � M � By property
	c
 of the publickey cryptosystem only she can decipher EA	M
� She can encipher a
private response with EB� also available in the public �le�

Observe that no private transactions between Alice and Bob are needed to estab
lish private communication� The only �setup� required is that each user who wishes
to receive private communications must place his enciphering algorithm in the public
�le�

Two users can also establish private communication over an insecure communi
cations channel without consulting a public �le� Each user sends his encryption key
to the other� Afterwards all messages are enciphered with the encryption key of the
recipient� as in the publickey system� An intruder listening in on the channel cannot
decipher any messages� since it is not possible to derive the decryption keys from the
encryption keys� 	We assume that the intruder cannot modify or insert messages into
the channel�
 Ralph Merkle has developed another solution ��� to this problem�

A publickey cryptosystem can be used to �bootstrap� into a standard encryption
scheme such as the NBS method� Once secure communications have been established�
the �rst message transmitted can be a key to use in the NBS scheme to encode all
following messages� This may be desirable if encryption with our method is slower
than with the standard scheme� 	The NBS scheme is probably somewhat faster if
specialpurpose hardware encryption devices are used� our scheme may be faster on
a generalpurpose computer since multiprecision arithmetic operations are simpler to
implement than complicated bit manipulations�


IV Signatures

If electronic mail systems are to replace the existing paper mail system for business
transactions� �signing� an electronic message must be possible� The recipient of a
signed message has proof that the message originated from the sender� This quality
is stronger than mere authentication 	where the recipient can verify that the message
came from the sender
� the recipient can convince a �judge� that the signer sent the
message� To do so� he must convince the judge that he did not forge the signed
message himself� In an authentication problem the recipient does not worry about
this possibility� since he only wants to satisfy himself that the message came from the
sender�

An electronic signature must be messagedependent� as well as signerdependent�
Otherwise the recipient could modify the message before showing the messagesignature
pair to a judge� Or he could attach the signature to any message whatsoever� since
it is impossible to detect electronic �cutting and pasting��

To implement signatures the publickey cryptosystem must be implemented with
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trapdoor oneway permutations 	i�e� have property 	d

� since the decryption algo
rithm will be applied to unenciphered messages�

How can user Bob send Alice a �signed� messageM in a publickey cryptosystem�
He �rst computes his �signature� S for the message M using DB�

S � DB	M
 �

	Deciphering an unenciphered message �makes sense� by property 	d
 of a public
key cryptosystem� each message is the ciphertext for some other message�
 He then
encrypts S using EA 	for privacy
� and sends the result EA	S
 to Alice� He need not
send M as well� it can be computed from S�

Alice �rst decrypts the ciphertext with DA to obtain S� She knows who is the
presumed sender of the signature 	in this case� Bob
� this can be given if necessary in
plain text attached to S� She then extracts the message with the encryption procedure
of the sender� in this case EB 	available on the public �le
�

M � EB	S
 �

She now possesses a messagesignature pair 	M�S
 with properties similar to those
of a signed paper document�

Bob cannot later deny having sent Alice this message� since no one else could have
created S � DB	M
� Alice can convince a �judge� that EB	S
 � M � so she has proof
that Bob signed the document�

Clearly Alice cannot modify M to a di�erent version M �� since then she would
have to create the corresponding signature S� � DB	M �
 as well�

Therefore Alice has received a message �signed� by Bob� which she can �prove�
that he sent� but which she cannot modify� 	Nor can she forge his signature for any
other message�


An electronic checking system could be based on a signature system such as the
above� It is easy to imagine an encryption device in your home terminal allowing
you to sign checks that get sent by electronic mail to the payee� It would only be
necessary to include a unique check number in each check so that even if the payee
copies the check the bank will only honor the �rst version it sees�

Another possibility arises if encryption devices can be made fast enough� it will
be possible to have a telephone conversation in which every word spoken is signed by
the encryption device before transmission�

When encryption is used for signatures as above� it is important that the en
cryption device not be �wired in� between the terminal 	or computer
 and the com
munications channel� since a message may have to be successively enciphered with
several keys� It is perhaps more natural to view the encryption device as a �hardware
subroutine� that can be executed as needed�

We have assumed above that each user can always access the public �le reliably�
In a �computer network� this might be di�cult� an �intruder� might forge messages
purporting to be from the public �le� The user would like to be sure that he actually
obtains the encryption procedure of his desired correspondent and not� say� the en
cryption procedure of the intruder� This danger disappears if the public �le �signs�
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each message it sends to a user� The user can check the signature with the public �le�s
encryption algorithm EPF � The problem of �looking up� EPF itself in the public �le
is avoided by giving each user a description of EPF when he �rst shows up 	in person

to join the publickey cryptosystem and to deposit his public encryption procedure�
He then stores this description rather than ever looking it up again� The need for a
courier between every pair of users has thus been replaced by the requirement for a
single secure meeting between each user and the public �le manager when the user
joins the system� Another solution is to give each user� when he signs up� a book
	like a telephone directory
 containing all the encryption keys of users in the system�

V Our Encryption and Decryption Methods

To encrypt a message M with our method� using a public encryption key 	e� n
�
proceed as follows� 	Here e and n are a pair of positive integers�


First� represent the message as an integer between � and n � �� 	Break a long
message into a series of blocks� and represent each block as such an integer�
 Use any
standard representation� The purpose here is not to encrypt the message but only to
get it into the numeric form necessary for encryption�

Then� encrypt the message by raising it to the eth power modulo n� That is� the
result 	the ciphertext C
 is the remainder when M e is divided by n�

To decrypt the ciphertext� raise it to another power d� again modulo n� The
encryption and decryption algorithms E and D are thus�

C � E	M
 �M e 	mod n
� for a message M �

D	C
 � Cd 	mod n
� for a ciphertext C �

Note that encryption does not increase the size of a message� both the message
and the ciphertext are integers in the range � to n� ��

The encryption key is thus the pair of positive integers 	e� n
� Similarly� the
decryption key is the pair of positive integers 	d� n
� Each user makes his encryption
key public� and keeps the corresponding decryption key private� 	These integers
should properly be subscripted as in nA� eA� and dA� since each user has his own set�
However� we will only consider a typical set� and will omit the subscripts�


How should you choose your encryption and decryption keys� if you want to use
our method�

You �rst compute n as the product of two primes p and q�

n � p � q �
These primes are very large� �random� primes� Although you will make n public�

the factors p and q will be e�ectively hidden from everyone else due to the enormous
di�culty of factoring n� This also hides the way d can be derived from e�

You then pick the integer d to be a large� random integer which is relatively prime
to 	p� �
 � 	q � �
� That is� check that d satis�es�

gcd	d� 	p � �
 � 	q � �

 � �

�



	�gcd� means �greatest common divisor�
�

The integer e is �nally computed from p� q� and d to be the �multiplicative inverse�
of d� modulo 	p � �
 � 	q � �
� Thus we have

e � d � � 	mod 	p � �
 � 	q � �

�

We prove in the next section that this guarantees that 	�
 and 	�
 hold� i�e� that E
and D are inverse permutations� Section VII shows how each of the above operations
can be done e�ciently�

The aforementioned method should not be confused with the �exponentiation�
technique presented by Di�e and Hellman ��� to solve the key distribution problem�
Their technique permits two users to determine a key in common to be used in a
normal cryptographic system� It is not based on a trapdoor oneway permutation�
Pohlig and Hellman ��� study a scheme related to ours� where exponentiation is done
modulo a prime number�

VI The Underlying Mathematics

We demonstrate the correctness of the deciphering algorithm using an identity due
to Euler and Fermat ���� for any integer 	message
 M which is relatively prime to n�

M��n� � � 	mod n
 � 	�


Here �	n
 is the Euler totient function giving number of positive integers less than n
which are relatively prime to n� For prime numbers p�

�	p
 � p� � �

In our case� we have by elementary properties of the totient function ����

�	n
 � �	p
 � �	q

� 	p � �
 � 	q � �
 	�


� n � 	p � q
 � � �

Since d is relatively prime to �	n
� it has a multiplicative inverse e in the ring of
integers modulo �	n
�

e � d � � 	mod �	n

� 	�


We now prove that equations 	�
 and 	�
 hold 	that is� that deciphering works
correctly if e and d are chosen as above
� Now

D	E	M

 � 	E	M

d � 	M e
d 	mod n
 � M e�d 	mod n


E	D	M

 � 	D	M

e � 	Md
e 	mod n
 � M e�d 	mod n


and
M e�d �Mk���n��� 	mod n
 	for some integer k
�
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From 	�
 we see that for all M such that p does not divide M

Mp�� � � 	mod p


and since 	p � �
 divides �	n


Mk���n��� �M 	mod p
�

This is trivially true when M � � 	mod p
� so that this equality actually holds for
all M � Arguing similarly for q yields

Mk���n��� �M 	mod q
 �

Together these last two equations imply that for all M �

M e�d �Mk���n��� �M 	mod n
�

This implies 	�
 and 	�
 for all M� � � M � n� Therefore E and D are inverse
permutations� 	We thank Rich Schroeppel for suggesting the above improved version
of the authors� previous proof�


VII Algorithms

To show that our method is practical� we describe an e�cient algorithm for each
required operation�

A How to Encrypt and Decrypt E�ciently

Computing M e 	mod n
 requires at most � � log�	e
 multiplications and � � log�	e

divisions using the following procedure 	decryption can be performed similarly using
d instead of e
�

Step �� Let ekek�����e�e� be the binary representation of e�
Step �� Set the variable C to ��
Step �� Repeat steps �a and �b for i � k� k � �� � � � � ��

Step �a� Set C to the remainder of C� when divided by n�
Step �b� If ei � �� then set C to the remainder of C �M when divided by n�

Step �� Halt� Now C is the encrypted form of M �

This procedure is called �exponentiation by repeated squaring and multiplication��
This procedure is half as good as the best� more e�cient procedures are known�
Knuth ��� studies this problem in detail�

The fact that the enciphering and deciphering are identical leads to a simple
implementation� 	The whole operation can be implemented on a few specialpurpose
integrated circuit chips�


A highspeed computer can encrypt a ���digit message M in a few seconds�
specialpurpose hardware would be much faster� The encryption time per block in
creases no faster than the cube of the number of digits in n�
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B How to Find Large Prime Numbers

Each user must 	privately
 choose two large random numbers p and q to create his
own encryption and decryption keys� These numbers must be large so that it is not
computationally feasible for anyone to factor n � p � q� 	Remember that n� but not
p or q� will be in the public �le�
 We recommend using ���digit 	decimal
 prime
numbers p and q� so that n has ��� digits�

To �nd a ���digit �random� prime number� generate 	odd
 ���digit random
numbers until a prime number is found� By the prime number theorem ���� about
	ln �����
�� � ��� numbers will be tested before a prime is found�

To test a large number b for primality we recommend the elegant �probabilistic�
algorithm due to Solovay and Strassen ����� It picks a random number a from a
uniform distribution on f�� � � � � b� �g� and tests whether

gcd	a� b
 � � and J	a� b
 � a�b����� 	mod b
� 	�


where J	a� b
 is the Jacobi symbol ���� If b is prime 	�
 is always true� If b is com
posite 	�
 will be false with probability at least ���� If 	�
 holds for ��� randomly
chosen values of a then b is almost certainly prime� there is a 	negligible
 chance of
one in ���� that b is composite� Even if a composite were accidentally used in our
system� the receiver would probably detect this by noticing that decryption didn�t
work correctly� When b is odd� a � b� and gcd	a� b
 � �� the Jacobi symbol J	a� b

has a value in f��� �g and can be e�ciently computed by the program�

J	a� b
 � if a � � then � else

if a is even then J	a��� b
 � 	��
�b������

else J	b 	mod a
� a
 � 	��
�a�����b�����

	The computations of J	a� b
 and gcd	a� b
 can be nicely combined� too�
 Note that
this algorithm does not test a number for primality by trying to factor it� Other
e�cient procedures for testing a large number for primality are given in ���������

To gain additional protection against sophisticated factoring algorithms� p and q
should di�er in length by a few digits� both 	p � �
 and 	q � �
 should contain large
prime factors� and gcd	p � �� q � �
 should be small� The latter condition is easily
checked�

To �nd a prime number p such that 	p � �
 has a large prime factor� generate a
large random prime number u� then let p be the �rst prime in the sequence i � u� ��
for i � �� �� �� � � � � 	This shouldn�t take too long�
 Additional security is provided by
ensuring that 	u� �
 also has a large prime factor�

A highspeed computer can determine in several seconds whether a ���digit num
ber is prime� and can �nd the �rst prime after a given point in a minute or two�

Another approach to �nding large prime numbers is to take a number of known
factorization� add one to it� and test the result for primality� If a prime p is found
it is possible to prove that it really is prime by using the factorization of p � �� We
omit a discussion of this since the probabilistic method is adequate�
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C How to Choose d

It is very easy to choose a number d which is relatively prime to �	n
� For example�
any prime number greater than max	p� q
 will do� It is important that d should be
chosen from a large enough set so that a cryptanalyst cannot �nd it by direct search�

D How to Compute e from d and ��n�

To compute e� use the following variation of Euclid�s algorithm for computing the
greatest common divisor of �	n
 and d� 	See exercise �������� in ����
 Calculate
gcd	�	n
� d
 by computing a series x�� x�� x�� � � �� where x� � �	n
� x� � d� and xi�� �
xi�� 	mod xi
� until an xk equal to � is found� Then gcd	x�� x�
 � xk��� Compute
for each xi numbers ai and bi such that xi � ai � x� � bi � x�� If xk�� � � then bk��

is the multiplicative inverse of x� 	mod x�
� Since k will be less than � log�	n
� this
computation is very rapid�

If e turns out to be less than log�	n
� start over by choosing another value of d�
This guarantees that every encrypted message 	except M � � or M � �
 undergoes
some �wraparound� 	reduction modulo n
 �

VIII A Small Example

Consider the case p � ��� q � ��� n � p � q � �� � �� � ����� and d � ���� Then
�	����
 � �� � �� � ����� and e can be computed as follows�

x� � ����� a� � �� b� � ��
x� � ���� a� � �� b� � ��
x� � ���� a� � �� b� � ��� 	since ���� � ��� � �� � ���
 �
x	 � �� a	 � ��� b	 � �� 	since ��� � � � ��� � �
 �

Therefore e � ��� the multiplicative inverse 	mod ����
 of d � ����

With n � ���� we can encode two letters per block� substituting a twodigit num
ber for each letter� blank � ��� A � ��� B � ��� � � � � Z � ��� Thus the message

ITS ALL GREEK TO ME

	Julius Caesar� I� ii� ���� paraphrased
 is encoded�

���� ���� ���� ���� ���� ���� ���� ���� ���� ����

Since e � ����� in binary� the �rst block 	M � ���
 is enciphered�

M�
 � 					�
� �M
�
�
�
� �M � ��� 	mod ����
 �

The whole message is enciphered as�

��	� ��	� ���	 �			 �

� ���� ���� ���	 ���� �
�� �

The reader can check that deciphering works� �����
 � ��� 	mod ����
� etc�
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IX Security of the Method� Cryptanalytic Ap�

proaches

Since no techniques exist to prove that an encryption scheme is secure� the only test
available is to see whether anyone can think of a way to break it� The NBS standard
was �certi�ed� this way� seventeen manyears at IBM were spent fruitlessly trying to
break that scheme� Once a method has successfully resisted such a concerted attack it
may for practical purposes be considered secure� 	Actually there is some controversy
concerning the security of the NBS method ����


We show in the next sections that all the obvious approaches for breaking our
system are at least as di�cult as factoring n� While factoring large numbers is not
provably di�cult� it is a wellknown problem that has been worked on for the last three
hundred years by many famous mathematicians� Fermat 	���������
 and Legendre
	��������
 developed factoring algorithms� some of today�s more e�cient algorithms
are based on the work of Legendre� As we shall see in the next section� however� no
one has yet found an algorithm which can factor a ���digit number in a reasonable
amount of time� We conclude that our system has already been partially �certi�ed�
by these previous e�orts to �nd e�cient factoring algorithms�

In the following sections we consider ways a cryptanalyst might try to determine
the secret decryption key from the publicly revealed encryption key� We do not
consider ways of protecting the decryption key from theft� the usual physical security
methods should su�ce� 	For example� the encryption device could be a separate
device which could also be used to generate the encryption and decryption keys� such
that the decryption key is never printed out 	even for its owner
 but only used to
decrypt messages� The device could erase the decryption key if it was tampered with�


A Factoring n

Factoring n would enable an enemy cryptanalyst to �break� our method� The factors
of n enable him to compute �	n
 and thus d� Fortunately� factoring a number seems
to be much more di�cult than determining whether it is prime or composite�

A large number of factoring algorithms exist� Knuth ��� Section ������ gives an
excellent presentation of many of them� Pollard ��� presents an algorithm which
factors a number n in time O	n���
�

The fastest factoring algorithm known to the authors is due to Richard Schroeppel
	unpublished
� it can factor n in approximately

exp
q
ln	n
 � ln	ln	n

 � n

p
ln ln�n�� ln�n�

� 	ln	n


p

ln�n�� ln�ln�n��

steps 	here ln denotes the natural logarithm function
� Table � gives the number of
operations needed to factor n with Schroeppel�s method� and the time required if

��



each operation uses one microsecond� for various lengths of the number n 	in decimal
digits
�

Table �

Digits Number of operations Time

�� ���� ���� ��� hours
�� ���� ���� ��� days
��� ���� ���� �� years
��� ���� ���	 ��� � ��� years
��� ���� ���� ��� � ���� years
��� ���� ��	� ��� � ���� years

We recommend that n be about ��� digits long� Longer or shorter lengths can
be used depending on the relative importance of encryption speed and security in
the application at hand� An ��digit n provides moderate security against an attack
using current technology� using ��� digits provides a margin of safety against future
developments� This �exibility to choose a keylength 	and thus a level of security
 to
suit a particular application is a feature not found in many of the previous encryption
schemes 	such as the NBS scheme
�

B Computing ��n� Without Factoring n

If a cryptanalyst could compute �	n
 then he could break the system by computing d
as the multiplicative inverse of e modulo �	n
 	using the procedure of Section VII D
�

We argue that this approach is no easier than factoring n since it enables the
cryptanalyst to easily factor n using �	n
� This approach to factoring n has not
turned out to be practical�

How can n be factored using �	n
� First� 	p � q
 is obtained from n and �	n
 �
n� 	p� q
 � �� Then 	p� q
 is the square root of 	p� q
�� �n� Finally� q is half the
di�erence of 	p� q
 and 	p� q
�

Therefore breaking our system by computing �	n
 is no easier than breaking our
system by factoring n� 	This is why n must be composite� �	n
 is trivial to compute
if n is prime�


C Determining d Without Factoring n or Computing ��n��

Of course� d should be chosen from a large enough set so that a direct search for it is
unfeasible�

We argue that computing d is no easier for a cryptanalyst than factoring n� since
once d is known n could be factored easily� This approach to factoring has also not
turned out to be fruitful�

A knowledge of d enables n to be factored as follows� Once a cryptanalyst knows d
he can calculate e � d� �� which is a multiple of �	n
� Miller ��� has shown that n can
be factored using any multiple of �	n
� Therefore if n is large a cryptanalyst should
not be able to determine d any easier than he can factor n�

��



A cryptanalyst may hope to �nd a d� which is equivalent to the d secretly held by
a user of the publickey cryptosystem� If such values d� were common then a brute
force search could break the system� However� all such d� di�er by the least common
multiple of 	p� �
 and 	q� �
� and �nding one enables n to be factored� 	In 	�
 and
	�
� �	n
 can be replaced by lcm	p � �� q � �
�
 Finding any such d� is therefore as
di�cult as factoring n�

D Computing D in Some Other Way

Although this problem of �computing eth roots modulo n without factoring n� is
not a wellknown di�cult problem like factoring� we feel reasonably con�dent that it
is computationally intractable� It may be possible to prove that any general method
of breaking our scheme yields an e�cient factoring algorithm� This would establish
that any way of breaking our scheme must be as di�cult as factoring� We have not
been able to prove this conjecture� however�

Our method should be certi�ed by having the above conjecture of intractability
withstand a concerted attempt to disprove it� The reader is challenged to �nd a way
to �break� our method�

X Avoiding �Reblocking�When Encrypting A Signed

Message

A signed message may have to be �reblocked� for encryption since the signature nmay
be larger than the encryption n 	every user has his own n
� This can be avoided as
follows� A threshold value h is chosen 	say h � �����
 for the publickey cryptosystem�
Every user maintains two public 	e� n
 pairs� one for enciphering and one for signature
veri�cation� where every signature n is less than h� and every enciphering n is greater
than h� Reblocking to encipher a signed message is then unnecessary� the message is
blocked according to the transmitter�s signature n�

Another solution uses a technique given in ���� Each user has a single 	e� n
 pair
where n is between h and �h� where h is a threshold as above� A message is encoded
as a number less than h and enciphered as before� except that if the ciphertext is
greater than h� it is repeatedly reenciphered until it is less than h� Similarly for
decryption the ciphertext is repeatedly deciphered to obtain a value less than h� If n
is near h reenciphering will be infrequent� 	In�nite looping is not possible� since at
worst a message is enciphered as itself�


XI Conclusions

We have proposed a method for implementing a publickey cryptosystem whose se
curity rests in part on the di�culty of factoring large numbers� If the security of our
method proves to be adequate� it permits secure communications to be established
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without the use of couriers to carry keys� and it also permits one to �sign� digitized
documents�

The security of this system needs to be examined in more detail� In particular�
the di�culty of factoring large numbers should be examined very closely� The reader
is urged to �nd a way to �break� the system� Once the method has withstood all
attacks for a su�cient length of time it may be used with a reasonable amount of
con�dence�

Our encryption function is the only candidate for a �trapdoor oneway permuta
tion� known to the authors� It might be desirable to �nd other examples� to provide
alternative implementations should the security of our system turn out someday to be
inadequate� There are surely also many new applications to be discovered for these
functions�
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