PROBLEM:

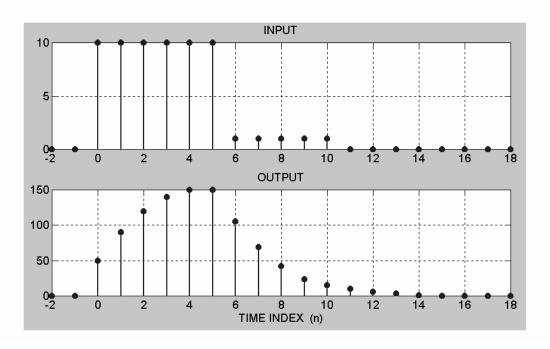
This problem is concerned with finding the output of an FIR filter for a given input signal. A linear time-invariant system is described by the difference equation

$$y[n] = \sum_{k=0}^{4} (5-k)x[n-k]$$

- (a) Determine the filter coefficients $\{b_k\}$ of this FIR filter.
- (b) Find the impulse response, h[n], for this FIR filter. The impulse response is a discrete-time signal, so make a (stem) plot of h[n] versus n.
- (c) Use the above difference equation to compute the output y[n] when the input is

$$x[n] = \begin{cases} 0 & n < 0 \\ 10 & 0 \le n \le 5 \\ 1 & 6 \le n \le 10 \\ 0 & n \ge 11. \end{cases}$$

Make a plot of both x[n] and y[n] vs. n. (Hint: you might find it useful to check your results with MATLAB's conv() function.)


(a)
$$\frac{k}{5}$$
 $\frac{5-k}{5}$ $[b_k] = [54321]$
1 4
2 3
3 2
4 1

$$(b) \xrightarrow{5} h[n]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$


```
11
                                                                   12
                                                                              14
                                                                                  15
                                                         10
                                                                        13
                                                                                       16
                      2
X[n]
                          10
                      10
                                                              0
                               10
      50
                30
                      20
                              10
                     30
          50
                40
                          20
                     40
                               20
                50
                          30
                                  10
                     50
                         40
                              30 20
                                       10
                         50
                              40 30
                                       20
                                             10
                              50
                                 40
                                       30
                                                 10
                                            20
                                   5
                                             3
                                                  Z
                                       5
                                            4
                                                  3
                                                      2
                                            5
                                                           2
                                                                 1
                                                 5
                                                           3
                                                                 2
                                                      5
                                                                 3
                                                                      3
     50 90
                    140 150 150 105 69 42
               120
                                                24
                                                     15
                                                          10
```

