Wide Mouth Frog Protocol
A very simple protocol — the Wide Mouth Frog protocol — allows two agents, A and B, to establish secure communications, using a trusted authentication server, S, and synchronized clocks all around. Using standard notation the protocol can be specified as follows:

[image: image1.png]A= S: A {Ty,Ksp,B}k,c




[image: image2.png]S = B:{Ts, Kap, A}kps




Agents A and B are equipped with keys Kas and Kbs, respectively, for communicating securely with S. So we have assumptions:

A believes key(Kas, A<->S)

S believes key(Kas, A<->S)

B believes key(Kbs, B<->S)

S believes key(Kbs, B<->S)

Agent A wants to initiate a secure conversation with B. It therefore invents a key, Kab, which it will use to communicate with B. A believes that this key is secure, since it made up the key itself:

A believes key(Kab, A<->B)

B is willing to accept this key, as long as it is sure that it came from A:

B believes (A has jurisdiction over key(K, A<->B))

Moreover, B is willing to trust S to accurately relay keys from A:

B believes (S has jurisdiction over (A believes key(K, A<->B)))

That is, if B believes that S believes that A wants to use a particular key to communicate with B, then B will trust S and believe it also.

The goal is to have

B believes key(Kab, A<->B)

A reads the clock, obtaining the current time t, and sends the following message:

1 A->S: {t, key(Kab, A<->B)}Kas
That is, it sends its chosen session key and the current time to S, encrypted with its private authentication server key Kas.

Since S believes that key(Kas, A<->S), and S sees {t, key(Kab, A<->B)}Kas, then S concludes that A actually said {t, key(Kab, A<->B)}. (In particular, S believes that the message was not manufactured out of whole cloth by some attacker.)

Since the clocks are synchronized, we can assume

S believes fresh(t)

Since S believes fresh(t) and S believes A said {t, key(Kab, A<->B)}, S believes that A actually believes that key(Kab, A<->B). (In particular, S believes that the message was not replayed by some attacker who captured it at some time in the past.)

S then forwards the key to B:

2 S->B: {t, A, A believes key(Kab, A<->B)}Kbs
Because message 2 is encrypted with Kbs, and B believes key(Kbs, B<->S), B now believes that S said {t, A, A believes key(Kab, A<->B)}. Because the clocks are synchronized, B believes fresh(t), and so fresh(A believes key(Kab, A<->B)). Because B believes that S's statement is fresh, B believes that S believes that (A believes key(Kab, A<->B)). Because B believes that S is authoritative about what A believes, B believes that (A believes key(Kab, A<->B)). Because B believes that A is authoritative about session keys between A and B, B believes key(Kab, A<->B). B can now contact A directly, using Kab as a secret session key.

Now let's suppose that we abandon the assumption that the clocks are synchronized. In that case, S gets message 1 from A with {t, key(Kab, A<->B)}, but it can no longer conclude that t is fresh. It knows that A sent this message at some time in the past (because it is encrypted with Kas) but not that this is a recent message, so S doesn't believe that A necessarily wants to continue to use the key Kab. This points directly at an attack on the protocol: An attacker who can capture messages can guess one of the old session keys Kab. (This might take a long time.) The attacker then replays the old {t, key(Kab, A<->B)} message, sending it to S. If the clocks aren't synchronized (perhaps as part of the same attack), S might believe this old message and request that B use the old, compromised key over again.

Fuente: http://www.tml.tkk.fi/Opinnot/Tik-110.501/1995/ban.html#Head3.1

