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ABSTRACT: 

 

We introduce an analytical model, the Wald Analytical Long-distance Dispersal (WALD) 

model, for estimating dispersal kernels of wind-dispersed seeds and their escape probability 

from the canopy.  The model is based on simplifications to well-established three-dimensional 

Lagrangian stochastic approaches for turbulent scalar transport resulting in a 2-parameter 

Wald (or Inverse Gaussian) distribution.  Unlike commonly-used phenomenological models, 

WALD's parameters can be estimated from the key factors affecting wind dispersal – wind 

statistics, seed release height, and seed terminal velocity – determined independently of 

dispersal data.  WALD’s asymptotic power-law tail has an exponent of -3/2, a limiting value 

verified by a meta-analysis for a wide variety of measured dispersal kernels and fatter than the 

exponent of the bivariate student t-test (2Dt). We tested WALD using three dispersal data sets 

on forest trees, heathland shrubs and grassland forbs and compared WALD’s performance 

with other analytical mechanistic models (revised versions of the tilted Gaussian Plume 

model and the advection-diffusion equation), revealing fairest agreement between WALD 

predictions and measurements.  Analytical mechanistic models such as WALD combine the 

advantages of simplicity and mechanistic understanding and are valuable tools for modeling 

large-scale long-term plant population dynamics. 
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Introduction 

The past decade witnessed a proliferation of studies that address the importance of seed 

dispersal in ecological processes (Cain et al. 2000; Cain et al. 2003; Clark et al. 1999; Levin 

et al. 2003; Nathan et al. 2002a; Nathan and Muller-Landau 2000; Wang and Smith 2002; 

Wenny 2001).  A major emphasis in these studies is modeling seed dispersal using both the 

phenomenological approach (Bullock and Clarke 2000; Clark et al. 2001; Clark 1998; Clark 

et al. 1999; Higgins et al. 2003b; Nathan et al. 2000; Stoyan and Wagner 2001; Tanaka et al. 

1998) and, especially for wind dispersal, the mechanistic approach (Greene and Johnson 

1989; Greene and Johnson 1995; Greene and Johnson 1996; Horn et al. 2001; Nathan et al. 

2002a; Nathan et al. 2002b; Nathan et al. 2001; Okubo and Levin 1989; Soons and Heil 2002; 

Soons et al. 2004; Tackenberg 2003; Tackenberg et al. 2003).  Both modeling approaches 

have been shown to provide reliable predictions of observed seed dispersal patterns. However, 

the phenomenological approach has been favored for modeling dispersal in large-scale and 

long-term population studies (Chave 2000; Chave and Levin 2003; Clark 1998; Higgins and 

Richardson 1999; Levin et al. 1997; Levin et al. 2003), because of its inherent simplicity. 

Simplicity is important for implementation in spatially explicit population models that 

integrate the spatial structure of landscapes, quantify the spread of expanding populations of 

invasive and native species, including pests, and estimate gene flow patterns.  Detailed 

mechanistic approaches, despite their advantages of being estimated independently of the 

dispersal data, being generally applicable and providing insights into the underlying transport 

mechanism, require computer-intensive simulations of wind statistics, hence are impractical 

for large-scale long-term applications.  

Simplified mechanistic models that relate mean wind conditions and seed attributes to 

dispersal distances are based on “ballistic” models (Greene and Johnson 1989; Greene and 

Johnson 1995; Greene and Johnson 1996; Nathan et al. 2002a; Nathan et al. 2001; Soons and 
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Heil 2002).  These models capture the mode of the dispersal curve well but fail to reproduce 

its tail, i.e., long-distance dispersal (LDD) events (Bullock and Clarke 2000; Nathan et al. 

2002a).  In many ecosystems, LDD is a crucially important determinant of spatial spread, 

gene flow, and species coexistence (Levin et al. 2003).  This underestimation of the tails is 

attributed to an underestimation in uplifting and escape of seeds from the canopy, events that 

play a major role in LDD (Horn et al. 2001; Nathan et al. 2002b). 

To partially circumvent this problem, a Coupled Eulerian-Lagrangian Closure (CELC) 

model (Hsieh et al. 2000; Hsieh et al. 1997; Katul and Albertson 1998; Katul and Chang 

1999; Nathan et al. 2002b) has recently been applied for seed dispersal by wind (Nathan et al. 

2002b; Soons et al. 2004).  This model reproduced well the observed seed dispersal data 

collected vertically along a 45-m high tower for five wind-dispersed tree species in a 

deciduous forest in the southeastern USA (Nathan et al. 2002b), and horizontally for four 

wind-dispersed herbaceous species in grasslands in The Netherlands (Soons et al. 2004).  In 

both cases, the model confirmed that uplifting and subsequent seed escape from the canopy is 

a necessary condition for LDD.  Tackenberg (2003) arrived at a similar conclusion, using 

detailed turbulent velocity measurements.  

The CELC model is computationally expensive requiring thousands of trajectory 

calculations thereby prohibiting its use in large-scale and complex ecological models.  Hence, 

what is currently lacking is a simplified dispersal model that retains the main mechanisms in 

CELC (or other complex turbulent transport models) but also preserves the simplicity of 

phenomenological models.  Recently-proposed phenomenological models such as the 2Dt 

(Clark et al. 1999) and mixed Weibull (Higgins et al. 2003a; Higgins and Richardson 1999) 

provide good description of LDD via fat-tails that are typically absent in Gaussian or simple 

negative exponential distributions (Kot et al. 1996; Turchin 1998).  However, they require 

dispersal data for calibration thereby preventing their general use for any new species and 
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environmental settings. A fast analytical solution based on a mechanistic approach thus has 

the decisive merit of combining the major advantages of the two modeling approaches while 

avoiding their major disadvantages.  Additionally, it will provide the means to extrapolate 

from the commonly measured dispersal distances near the source (or near-field dispersion) to 

LDD or escape probabilities from the canopy.  The latter are much more difficult to measure.  

Furthermore, because the parameters of such model – seed terminal velocity, seed release 

height, and wind conditions – are easily interpretable and measurable, such an analytical 

mechanistic model provides the means for estimating LDD essentially for any wind-dispersed 

species.   

In this paper, we introduce a new analytic expression derived from a simplified 3-

dimensional stochastic dispersion model that retains the essential physics in CELC. As we 

shall explain below, this model converges to a Wald (or Inverse-Gaussian) distribution; 

hence, we call it the Wald Analytical Long-distance Dispersal (WALD) model. We compare 

the new model to two other analytical mechanistic models: the tilted Gaussian Plume and a 

solution to the advection-diffusion equation proposed by Okubo and Levin (1989). The latter 

two models were numerically revised to partially account for the effect of leaf area density on 

the vertically averaged mean velocity and turbulent diffusivity.  For simplicity, we focus on 

one-dimensional dispersal kernels (or cross-wind integrated models) and refer to dispersal 

kernels as the probability density function of locating a seed on the ground (or forest floor) 

with respect to a point source at a given height (i.e., "distance distribution" sensu Nathan and 

Muller-Landau 2000). If the dispersal process is isotropic, two-dimensional dispersal kernel 

(i.e., "dispersal kernel" sensu Nathan and Muller-Landau 2000) differs from its one-

dimensional counterpart only by 2πx, where x is the distance from the seed source.  

We test the new model against several seed dispersal data sets obtained from 

controlled seed release experiments. Ideally, model’s capacity to predict LDD should be 
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tested against “real” LDD data. Yet, quantifying LDD remains unaddressed challenge (Nathan 

et al. 2003) and its definition is still rather vague and case-specific (Nathan 2005). We 

approached these difficulties in two ways. First, we compared the performance of WALD and 

some alternative models in fitting the dispersal data after setting thresholds of >5 and >10 

meters from the source.  This procedure examines the model capacity (and robustness) to fit 

the low frequency of observed dispersal kernels away from the mode (Portnoy and Willson. 

1993). We emphasize that these release experiments were designed to encompass a wide 

range of influencing factors; while this approach was chosen to enhance the generality of our 

results, it inherently acts to reduce predictive ability.  Second, we also develop an analytical 

expression for calculating the probability of a seed to escape the forest canopy, and tested this 

model against observed seed uplifting probabilities reported in Nathan et al. (2002b). This test 

is directly related to LDD since seed uplifting by vertical updrafts is crucial (or necessary 

condition) for LDD.  

Next, we analyze the tail properties of the predicted dispersal kernel and verified 

whether these emerging properties accord a wide range of fitted power-law tails (i.e., heavy 

tails) from the literature. Finally, we demonstrate how to use the proposed approach to solve 

the so-called inverse problem - extracting biological dispersal traits and wind parameters by 

statistical fitting of the simplified analytical expression to measured dispersal kernels. 

 

Theory 

Thompson's (1987) model 

In this section, we provide a brief description of the essential physics in CELC as a basis for 

the analytical model development.  The formulation of Lagrangian stochastic models for the 

trajectories of air particles having no mass in turbulent flows is now a well established 

computational method in fluid mechanics and turbulence research (Pope 2000; Thomson 
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1987). These Lagrangian models must be developed to satisfy the so-called “well-mixed 

condition”.  This condition states that if the concentration of a material is uniform at some 

time t  it will remain so if there are no sources or sinks. This condition is currently the most 

rigorous and correct theoretical framework for the formulation of Lagrangian stochastic 

models and ensures consistency with prescribed Eulerian velocity statistics. For this 

condition, the Lagrangian velocity of an air parcel is described by a generalized Langevin 

equation (Thomson 1987) 

jijii dtuxbdttuxadu Ω+= ),,(),,(         

where x  and u are the position and velocity vectors of a tracer-particle at time t , 

respectively. The terms ai and bij are the drift and diffusion coefficients, respectively. The 

quantities dΩj are increments of a vector-valued Wiener process (Brownian walk) with 

independent components, mean zero, and variance dt. Here, subscripts (i, j) are used to denote 

components of Cartesian tensors, with implied summation over repeated indices.  Both 

meteorological and index notations are used interchangeably throughout for consistency with 

both the fluid mechanics and boundary layer meteorology literature (i.e. the components of x  

are xx ≡1 , yx ≡2 , and zx ≡3 ) with x , y , and z representing the longitudinal, lateral, and 

vertical axes, respectively.  

The specification of the drift and diffusion terms is sufficient to determine how air 

parcels move. While bij can be uniquely determined by requiring that the Lagrangian velocity 

structure function match predictions from theories of locally homogeneous and isotropic 

turbulence, the determination of ai is much more complex and requires the use of the well-

mixed condition.  Thomson (1987) showed that for high Reynolds numbers, typical of 

atmospheric flows, the well-mixed condition requires the distribution of air parcels in 

position-velocity space to be proportional to the Eulerian probability distribution function 
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),,( tuxp  and must remain so for all later times. This condition requires that ),,( tuxp  must 

be a solution to the generalized Fokker-Planck equation, 

2 1( ) ( )
2i i ij jk

i i i k

p u p a p b b p
t x u u u

∂ ∂ ∂ ∂ ⎛ ⎞+ = − + ⎜ ⎟∂ ∂ ∂ ∂ ∂ ⎝ ⎠
. 

The solution of the above Fokker-Planck equation for Gaussian turbulence provides 

probability distribution for the velocity components. For two- and three-dimensional 

turbulence, Thomson (1987) showed that the drift term, ai(x, u, t) can be constrained (but not 

completely determined) by requiring consistency with prescribed Eulerian velocity statistics.  

 

Simplifications 

Additional criteria to the well-mixed condition are needed to resolve the non-uniqueness of 

the drift coefficients in two and three dimensions. Furthermore, the resulting set of three 

equations derived by Thomson (1987) for the velocity fluctuations (not shown here but used 

in the CELC model), cannot be solved analytically. Therefore, further simplifications are 

needed to reduce the model to arrive at an analytic dispersal kernel.  We consider the one-

dimensional case of turbulent flows for very low turbulent intensity as a basis for building the 

simplified model.  Our intent is to develop a dispersal kernel that recovers the most 

elementary turbulent flow physics and then progress to account for vertical inhomogeneity 

and high intensity by modifying the simplified solution.  Within such a conceptual framework 

and idealized conditions, the Langevin and the Fokker-Planck equations reduce to, 

respectively 
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where ><= εoCb . Moreover, with a Gaussian p(z, u3, t) given by 
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Here, < 33uu ′′ > (≡σw
2) is the variance of the vertical velocity component (the coordinates are 

defined so that 02 >=< u  as is common in atmospheric flows), TL is the integral time scale (a 

measure of temporal coherency of turbulent eddies), C0 (≈5.5) is a similarity constant (related 

to the Kolmogorov constant), and >< ε  is the mean turbulent kinetic energy dissipation rate. 

Note that in the previous equations <·> is spatial averaging (Finnigan 2000; Raupach and 

Shaw 1982), and over-bar is time averaging.  The vertical distribution of the flow statistics 

>< 1u , < 33uu ′′ >, and >< ε  needed to drive the Thomson (1987) model can be readily 

computed from Eulerian second-order closure models, which require as input, the mean 

velocity above the canopy, the leaf area density, and the drag coefficient of the canopy 

(Ayotte et al. 1999; Katul and Albertson 1998; Katul and Chang 1999; Katul et al. 2001; 

Massman and Weil 1999).   

It is clear that even the one-dimensional Thomson’s (1987) model cannot be solved 

analytically.  We consider the previous formulation for the case where the flow is vertically 

homogeneous. Under this assumption, the change in the position and velocity of an air parcel 

transporting a seed with terminal velocity tV  (and zero inertia) is given by the stochastic 

differential equations: 
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Equation (2) also assumes that the seed terminal velocity is achieved instantly following a 

seed release.  While equations (2) and (3) are analogous to the Lagrangian model proposed by 

Andersen (1991), equation (1) drastically differs from his model given that the dispersion 

term is dependent on a turbulent kinetic energy dissipation rate (which is non-monotonic 

inside canopies) and a drift term that also varies with 3 3u u′ ′< >  both modeled using second-

order closure principles (described later).  Note that when 03 ≈u , the simplest ballistic model 

is recovered.   

For notational simplicity, we use overbar to indicate both time and horizontal 

averages, and set >< 1u =U  and εε >=< .  We emphasize again that canopy turbulence is 

highly inhomogeneous and with large turbulent intensity; hence, these simplifications are only 

adopted to arrive at a simplified version of the Thomson (1987) model that can be solved 

analytically and we later modify the solution to account for high intensity and vertical 

inhomogeneity through appropriate adjustments of its coefficients. 

 

Analytical Solution 

Substituting equation (3) in equations (1) and (2) to eliminate time, one obtains the second 

order process 
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equation can also be obtained and is reported in the Appendix. If the seed settling time is 

assumed much longer than the vertical velocity integral time scale (see Appendix 1), the 

previous problem can be further simplified and the corresponding Fokker-Plank equation 

becomes  
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The solution of equation (4) with the specified initial and boundary conditions is well 

known (Cox and Miller 1965, p. 221).  More importantly, the probability distribution of a 

seed reaching the ground can be obtained by noticing that it is equivalent to the probability of 

crossing the absorbing boundary 03 =x  starting from rx ,3 . Following the standard procedure 

for the calculation of the first passage times (Cox and Miller 1965, p. 221) the final kernel of 

seed dispersal can be obtained as (see Appendix 1): 
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The Inverse Gaussian distribution, known as the first passage time distribution of Brownian 

motion with positive drift, was first derived by Schrödinger (1915) and is now routinely used 

to model positively skewed data (Wald, 1947).  Note that the dispersal kernel parameters 

µ′and λ′ only depend on the wind velocity statistics (σ  and U ), seed terminal velocity ( tV ), 

and seed release height ( rx ,3 ).  We call this analytical solution the Wald Analytical Long-

distance Dispersal (WALD) model, as it exhibits heavy tails for LDD, as we shall show later. 

It has the following statistical properties (Evans et al. 1993): Mean = µ′ ; Variance = λµ ′′ /3 ; 

Mode = 
1/ 22

2

9 31
4 2
µ µµ
λ λ

⎡ ⎤′ ′⎛ ⎞
′ ⎢ ⎥+ −⎜ ⎟′ ′⎢ ⎥⎝ ⎠⎣ ⎦

; Skewness Coefficient = 
2/1

3 ⎟
⎠
⎞

⎜
⎝
⎛

′
′

λ
µ ; and Kurtosis 

Coefficient = 
λ
µ
′
′

+153 .  Here, µ′ (>0) and λ′ (>0) are often called the location and scale 

parameters.  The WALD kernel has finite variance, is positively skewed, and has a Kurtosis 

coefficient much bigger than that of a Gaussian distribution (=3).  

For values of γ→0 equation (5) exhibits power-law decay (i.e. fat-tail distribution) with 

exponent –3/2, a signature of long-distance dispersal.  For finite γ , the fat tail presents a cut-

off (exponential decay) at a distance which reduces with increasing γ. 

 From the Fokker-Plank equation in (4) one can also derive analytically the escape 

probability from the canopy top as a function of canopy height h . This is given by (Cox and 

Miller 1965) 

( )
( )

2
3,

3, 2

exp 2 / 1
Pr( )

exp 2 / 1
r

r

x
x h

h

γ σ

γ σ

−
> =

−
,       (6) 

Noting that a necessary condition for LDD is seed escape from the canopy (Nathan et al. 

2002b), equation (6) provides an unambiguous upper limit on the fraction of seeds that can 

“potentially” undergo or experience LDD as a function of the key dispersal  determinants. 
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In summary, the WALD kernel derived here makes several restrictive assumptions 

about canopy turbulence, including low turbulent intensity flows, instant attainment of 

terminal velocity (and thus zero inertia of seed), negligible effects of the correlation of 3u  

relative to the settling time, in addition to all the simplifications to the classical Thomson 

(1987) model including Gaussian fluctuations, and the use of Kolmogorov scaling within the 

inertial subrange to arrive at ijb .  How robust is this kernel to such restrictive assumptions is 

investigated next, after discussing the kernel parameter estimation from determinants of seed 

dispersal. 

 

Estimation of Model Parameters 

For equation (5) to be readily usable, it is necessary to estimateσ  from wind statistics 

typically observed or available above the canopy.   From Appendix 1, it can be shown that  

 ⎟⎟
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2 22 σ
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Unfortunately, ε  is rarely measured and is difficult to model inside canopies thereby making 

the usage of equation (7) not practical.  Equation (7), however, can be further simplified when 

the mixing length (or effective eddy sizes responsible for dispersion) inside the canopy is 

assumed constant proportional to h  through a coefficient κ .  For this simplification, the term 

involving ε  can be simplified to (Poggi et al. 2004a; Poggi et al. 2004b) 

wo

w h
C σ

κ
ε

σ
=

22
.         (8) 

Replacing equation (8) into equation (7) gives: 
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h wσ

κσ 22          (9) 
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where ]4.0,3.0[∈κ  .   The coefficient κ , while bounded and qualitatively connected to a 

mixing length must be considered as a semi-empirical parameter here because all the model 

assumptions (including vertically homogeneous and low intensity flows, instant attainment of 

terminal velocity, zero inertia of seed, the negligible effects of the correlation of 3u  relative to 

the settling time), and all simplifications in the original Thomson (1987) model (including a 

Gaussian Ωd ), affect this coefficient.    

The lower limit on κ can be derived by noting that near the canopy top, *uw ≈σ  and 

that L
o

w T
C

=
ε

σ 22
, which is also approximately 

*

3.0
u
h  (Raupach 1989a; Raupach 1989b; 

Raupach et al. 1996) for dense and extensively uniform canopies (i.e. 3.0=κ ).  The upper 

limit is constrained by the fact that eddies within the canopy, even for very sparse canopies, 

cannot geometrically exceed the classical mixing length scale at the canopy top (i.e. 

k=κ =0.4, the von Kármán constant).   

Finally, the values U and wσ can be estimated from wind speed measurement above 

the canopy in numerous ways.  One approach is to use simplified analytical models (Massman 

and Weil 1999) driven by the wind speed above the canopy to compute the flow statistics 

inside the canopy, and then vertically average the computed profiles to obtain  U and wσ  (see 

Appendix 2 for formulation). 

 

Model Testing 

Evaluating Model Predictions by Seed Release Experiments 

While the setup is described elsewhere (Nathan and Katul 2004; Nathan et al. 2002b), 

the salient features are reviewed.  Seed release experiments were carried out in an 80 to 100-

year-old oak–hickory forest within the Blackwood division of the Duke Forest near Durham, 

North Carolina.  The stand is composed primarily from mixed hardwood species with 
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Quercus alba, Q. michauxii, Q. velutina, Carya tomentosa, C. ovata, Liriodendron tulipifera, 

and Liquidambar styraciflua as canopy dominant and Pinus taeda as a minor component, and 

mostly Ostrya virginiana, Carpinus caroliniana, and Cornus florida in the under-story.  The 

tree density is 311 ha-1, the basal area is 26.3 m2 ha-1, the mean canopy height is 33 m, and the 

leaf area index (projected foliage area per ground area) varies from 0.9 m2 m-2 (leafless 

conditions) to 4.9 m2 m-2 (full foliage). 

Five manual seed release experiments were conducted from November 2, 2000 to July 

20, 2001.  Eight wind-dispersed species were used in those releases with mean tV  ranging 

from 0.67 m s-1 to 1.89 m s-1 (Table 1).  Seeds were manually released from a 45-m high 

walkup tower at 3 levels: rx ,3 =30 m, 21 m, and 12 m, above the forest floor.  Each seed 

release lasted for about 30 minutes with seeds released every 30 s.  A CSAT 3 (Campbell 

Scientific, Logan, UT) sonic anemometer situated at 40 m above the forest floor recorded the 

mean flow statistics >< 1u , < 11uu ′′ >, < 22uu ′′ >, < 33uu ′′ >, < 31uu ′′ > for each 30 minute release 

time.  The *u = ( ) 4/12
32

2
31 >′′<+>′′< uuuu  varied roughly from 0.1 m s-1 to 0.9 m s-1, with a 

concomitant U variation from 0.3 to 3.3 m s-1 just above the canopy, within the ensemble of 

the 15 (i.e., 5 experiments and 3 release heights per experiment) manual seed releases (see 

Table 1).  To facilitate the detection of seeds on the forest floor, and to distinguish between 

seeds of the same species released from different height, all seeds were color-sprayed (in 

different colors) prior to the release.  Measurements of tV  before and after spraying revealed 

that spraying impacted tV appreciably (12% to 112%).  Hence, the measured after-spraying 

tV values were used in the calculations. 

For each *u , the local leaf area density )(za was measured (or estimated) and the 

second-order closure model (Massman and Weil 1999) was used to calculate the vertical 

profiles of >< 1u , < 11uu ′′ >, < 22uu ′′ >, < 33uu ′′ >, < 31uu ′′ > within the canopy (see Appendix 2) 
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using the measured flow statistics above the canopy (Table 1). These flow statistics were then 

vertically averaged to estimate U and wσ , and hence, ( / )tV Uγ =  and 2 (2 / )wh Uσ κ σ=  for 

each species and each seed release.  All in all, an ensemble of 51 seed dispersal kernels was 

measured in the 5 seed release experiments. 

 The measured 51 kernels (shown in Appendix 3) were compared to the predicted 

kernels for a wide range of leaf area index (factor of 4), release height (factor of 2.5), terminal 

velocity (factor of 2), and friction velocity (factor of 9) as evidenced by Table 1.   From 

Appendix 3, the agreement between WALD's calculations and the measurements is 

reasonably good despite all the simplifying assumptions.  Using regression analysis on the 

459 data points (i.e. all the points for all release dates shown in Appendix 3) resulted in a 

correlation coefficient (r) of 0.69.  The regression analysis was conduced on 1exp( ( )p x− ) 

rather than 1( )p x to increase the regression sensitivity for low 1( )p x  (<0.2).  Since low values 

are typically observed at both tails of the distribution (i.e. near and away from the source), we 

repeated the regression analysis for 1 5x m>  to reduce their effects of low probabilities near 

the release point and for and 1 10x m>  to check the robustness of these comparisons to this 

arbitrary threshold.  Again, this test better represents the model ability to describe relatively 

long dispersal events than ordinary tests; the adverse consequence is an inherent tendency to 

lower fits due to amplified noise in the measurements.   Given that WALD involves no 

parameter tuning, and given the uncertainty of the data in terms of small probabilities, the 

overall agreement between measured and modeled dispersal kernels is quite encouraging 

(Table 2, and Appendix 3). 

It can be argued that the kernels in Appendix 3 are not real LDD experiments as the 

maximum observed distance does not exceed 80 m.  It is possible, however, to evaluate the 

“onset” of LDD by comparing measured and modeled seed escape probabilities, a necessary 
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condition for LDD (Nathan et al., 2002b).  We compared in Appendix 4 predictions from 

equation (6) to the measured escape probabilities for the six species reported in Nathan et al. 

(2002b) (and collected at the same tower).  Appendix 4 suggests good agreement between 

measured and modeled escape probabilities lending some confidence in WALD’s ability to 

the necessary conditions for LDD (i.e. seed escape). 

Comparison with Other Analytical Model Kernels 

The Duke Forest experiments also permit us to evaluate other analytic kernels 

computed from the tilted Gaussian plume model and the advection-diffusion equation model 

in Okubo and Levin (1989).  These models were revised here to include the depth-averaged 

velocity U and the depth-averaged eddy diffusivity computed using the second-order closure 

model of Massman and Weil (1999) as described in Appendix 2.  This revision was necessary 

because the Okubo-Levin models do not consider any canopy effects on the velocity statistics.  

Rather, they assume that the mean velocity and eddy diffusivity are described by their 

boundary layer values (the boundary here being the forest floor) and the canopy is simply a 

passive source of seeds.  Canopy turbulence significantly differs from the classical boundary 

layer turbulence in that the second-order statistics all vary appreciably with height (within the 

canopy) and the mean velocity profile has an inflection point near the canopy-top (unlike 

power-law or logarithmic functions) as revealed by numerous canopy experiments (Finnigan 

2000; Katul and Albertson 1998; Poggi et al. 2004b) and Large Eddy Simulations (Albertson 

et al., 2001).  

In their original derivation, these two models are given, respectively, by 

2
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3,

1 2
33

( ) exp
22

t
r

t

V xx
V Up x

U σπ σ

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟− ⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟⎝ ⎠= −⎜ ⎟

⎜ ⎟
⎜ ⎟
⎝ ⎠

     (10a) 
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where 2
3 12 /Ax Uσ = , 2/)( ,3* rxukA =  is the mean eddy diffusivity (assuming a boundary 

layer flow rather than a canopy turbulence flow), 2α is the power-law exponent of the mean 

velocity profile in a rough-wall boundary layer; 2 1/ 6α = to 7/1 (Katul et al. 2002), and 

2
* 2(1 )

tV
k u

β
α

=
+

 is the ratio of the terminal velocity to a characteristic vertical turbulent 

velocity, and (.)Γ  is the gamma function.  To revise equations (10a) and (10b), U was 

computed from the Massman and Weil (1999) model (see Appendix 2), 2 0α = , and 

A = ∫
rx

t
r

dzzK
x

,3

0,3

)(1  with the turbulent diffusivity
dz
UdlKt

2−= .  Here, l  approaches its rough-

wall boundary layer value (= zk , where 4.0=k is the von Kármán constant) for sparse 

canopies but is a constant = hκ for dense canopies (Poggi et al. 2004b).   

We found that the two Okubo-Levin models agree reasonably well with the data.  We 

also show in Appendix 3 the kernel in equation (10b) with 3σ estimated from equation (9) 

rather than 2
3 12 /Ax Uσ = .  The difference between these two estimates is that in equation 

(10a), a distance-dependent σ originating from crosswind averaging results, while equation 

(9) yields σ  independent of 1x  (but is about 10 larger than wσ ).  Hence, 1( )p x  computed 

using equation (10a) with a constant σ  recovers the classic Gaussian kernel (Levin et al. 

2003) and is also shown for reference.   Using the same regression analysis on all the three 

analytical kernels and all the data (n=459 points; see Appendix 3 for a graphical comparison 

for each release height and species), WALD slightly outperformed the other models (Table 2).  
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Recall that the regression analysis is constructed to be “hypersensitive” to the variability in 

1( )p x  for 1( )p x <0.2 (i.e. long distance probability). 

 

Meta Analysis of Asymptotic Tails 

The rate of decay of )( 1xp for large 1x  determines the level of LDD estimated by the 

dispersal kernel.  It is clear that when 0→γ  (i.e., →UVt / 0), WALD's 2/3
11)( −→ xxp for 

large 1x . Such asymptotic finding was also reported in Levin et al., (2003), using a similar 

approach.  The 2/3
11)( −→ xxp  is also consistent with other Lagrangian dispersion analyses 

conducted on spores and pollen (Stockmarr 2002).   When γ  is large (e.g. heavy seeds or low 

winds), the power-law behavior of 1(xp ) is limited to an intermediate region beyond which 

the decay of 1(xp ) is faster than a power-law, i.e. exponential.     

For large 1x , the asymptotic behavior of the tilted Gaussian model is 2/1
11 ~)( −xxp and 

the advection-diffusion equation is 21
1 1( ) ~p x x β− −  ( 2 0β > ).  In Okubo and Levin (1989), the 

minimum 2 0.15β = (calculated here), and hence, the minimum exponent (or the heaviest tail 

behavior) is 16.1
11 ~)( −xxp .  In short, when 0→tV , both the titled Gaussian (i.e. 

2/1
11 ~)( −xxp ) and the solution to the advection-diffusion equation ( 1

11 ~)( −xxp ) yield tails 

“heavier” than WALD for large 1x , and as we show below, even heavier tails than almost all 

other empirical models constructed for the singular purpose of explaining heavy-tails.  

Because they exhibit such a heavy tail, both the tilted Gaussian model and the solution to the 

advection diffusion equation do not have finite variances as ∞→1x .  It is for this reason that 

the meta-analysis below is restricted to the WALD kernel. 

A logical but indirect test is to assess whether other empirical models or dispersal data 

result in tails that decay slower than 2/3
11 ~)( −xxp .  If so, then WALD's decay rate 
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2/3
11 ~)( −xxp will certainly underestimate LDD for such a species. We compared this 

asymptotic behavior with recent studies that used power-law type distribution to seed trap 

measured kernels and we find that virtually all studies resulted in a power-law decay with 

absolute exponent larger than 1.5 (Table 3).  That is, the exponent of WALD is sufficient to 

capture the tails for the majority of species that were measured in dispersal experiments 

(Table 3). We emphasize that in this particular comparison we test the predicted versus 

observed agreement on the asymptotic behavior of the tail, which is different from the tests 

using the release experiments data, in which we compared predicted versus observed dispersal 

frequencies at the tail of the dispersal kernel. It should also be noted that LDD is very difficult 

to measure and in most dispersal studies the measured dispersal distances did not exceed 

several tens of meters.   

Other studies recognized that estimating the tails from seed dispersal data is 

complicated by the fact that much of the seeds disperse near the source, which often exhibits 

an increase with distance rather than decrease (see Appendix 3 for examples from the Duke 

forest data). This recognition leads to several approaches aimed at introducing kernels with fat 

tails.  Two proposed phenomenological models employed different types of fat-tailed 

distributions.  The first, a Bivariate Student t-test (2Dt) distribution (Clark et al. 1999), is 

given by: 

12
1

1

1

1~)( +

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

n

u
x

xp  

which for large 1x  (and finite u ) yields a )1(2
11 ~)( +− nxxp .  The use of this distribution has 

been advocated recently in the interpretation of turbulent fluctuations in connection with the 

non-extensive thermodynamics of Tsallis (Beck 2002).  Also, such distributions can arise as 

solutions to non-linear Fokker-Plank equations and provide a unifying framework for 
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analyzing super-diffusion (or anomalous diffusion) in such stochastic differential equations.  

According to Clark et al. (1999), for wind-dispersed species of temperate deciduous forests, 

5.0<n  suggesting that the asymptotic behavior of the 2Dt model is 2
11 ~)( −xxp (for n→0) 

and 3
11 ~)( −xxp (for n=0.5).  In both cases, WALD has power-law tails that decay slower 

than those predicted by the 2Dt model (at least for 0→γ ).   

The second approach uses a superposition of two kernels, often referred to as the 

mixed model, which yields (Bullock and Clarke 2000): 

( ) nxcxbaxp −′+′−′ 111 exp~)(  

The advantage of this 4-parameter model is that the near-field dispersion primarily affects the 

exponential term while long-distance dispersal events affect the power-law.  Furthermore, this 

mixed model assumes that these two effects are additive not multiplicative (as derived by 

WALD and equations 10a,b).  It is evident that for large 1x , the above dispersal kernel (n>1) 

will be dominated by 

nx
xp

1
1

1~)(  

Based on data sets for two species (Calluna vulgaris and Erica cinerea) and for a wide 

range of wind conditions, Bullock and Clarke (2000) reported n  ranging from 1.0 to 2.39.  

We note that n was obtained by optimizing the parameters of the mixed model to fit their 

measured kernels with apparently n=1 a constrained condition (i.e. the optimization may have 

forced n=0).  If the likely constrained n=1 are removed, n=1.3-2.38.  Given the overall 

uncertainty, the lower limit is sufficiently close to 1.5 suggesting some confidence in the 

WALD modeled lower limit.  We also note that when Bullock and Clarke fitted a power-law 

distribution across the entire data set (rather than the mixed model), the reported values of 

n were appreciably higher (Table 3) ranging from 2.5-7.69. 
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The “inverse problem” 

To contrast our proposed mechanistic model with the results from typical ballistic 

models, especially at the tails, we consider again the study of Bullock and Clarke (2000).  

These authors concluded that a wind speed of 633 m s-1 is needed (at the seed release height) 

for their simple ballistic model to transport Calluna seeds some 80 m distance from the 

source.  Such a wind speed exceeds typical gusty winds by about 2 orders of magnitude, and 

is about an order of magnitude larger than damaging hurricanes.  We combined the seed trap 

measurements for all wind directions for Calluna and Erica in the Bullock and Clarke (2000) 

study and fitted equation (5b) to the resulting kernels in Figure 1a to determine µ′ and 

λ′ (Table 4), and hence determine the effective winds needed to transport these seeds.  Using 

the computedµ′ and λ′ , we estimated γ and σ , and then estimated U and wσ  to determine 

the effective wind speed and vertical velocity standard deviation that best reproduce the 

measured kernels (see Figure 1a).  We found that effective wind speeds on the order of 10 m 

s-1 and concomitant wσ  on the order of 3 m s-1 are sufficient to reproduce the measured 

distributions for both Calluna and Erica.  We note that just above the canopy (Raupach et al. 

1996), 3.3~/ *uU  and 1.1~/ *uwσ so that Uw /σ ~ 0.33.  For a wind speed of 10 m s-1, a 

wσ = 3 m s-1 is quite reasonable and consistent with what is established about flow statistics 

within the canopy sublayer.  Hence, based on our proposed approach, both Calluna and Erica 

seeds can travel 80 m for typical gusts encountered at the site.  We iterate here that equation 

(5) is derived for a single source and need not represent the near-field dispersal kernel of the 

Bullock-Clarke study.  However, the approximate power-law decay of the data ( 5.1−≈ ), 

seem to well support the results of our proposed simplified model.   

We repeated a similar exercise on four other grassland species (Cirsium dissectum, 

Hypochaeris radicata, Centaurea jacea, and Succisa pratensis) with tV now ranging from 
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0.33 to 4.3 m s-1 and with all seeds released above the main canopy (Soons et al. 2004).  In 

Soons et al. (2004), individual seeds were released at different mean wind speeds (≈  0.1-6.9 

m s-1), and hence, one-to-one direct comparisons between model calculations and 

measurements (as was done for the Duke Forest seed release experiments) are not possible.  

Only qualitative statements about the plausibility of WALD explaining the dispersal data can 

be made.  When WALD is fitted to the kernels in Figure 1b (line), the effective resulting 

mean velocity is well within the range reported by Soons et al. (2004) and close to the hourly 

average value (Table 5).  However, for such effective velocity, the model clearly 

underestimates the tails for all four species.   We note that fitting WALD assumes that all 

seeds were released during a 1 hour period at a constant mean wind (= effU ) and effwσ . That 

is, the model clearly does not reflect the conditions of the Soons et al. (2004) experiments in 

which seeds were released over the entire range of U (i.e. 0.1- 6.9 m s-1).  Not withstanding 

those limitations, when the model was used to compute the dispersal kernels for U = 6.9 m s-1 

(i.e. maximum recorded mean wind speed), the measured dispersal kernel tails were well 

captured by the model suggesting that those events are, in fact, associated with the high mean 

wind speed conditions encountered during the experiment similar to the Bullock-Clarke study.  

The analysis in Figure 1b is an indirect confirmation that the proposed model can reproduce 

the asymptotic behavior of the tails for small and large tV even for seeds released above the 

canopy without requiring unrealistic wind conditions. 

 

Conclusions 

We have developed and tested an analytical mechanistic model for wind dispersal of seeds 

based on the utmost simplified representation of canopy turbulence. This analytical solution 

maintains mechanistic properties and has a shape of a Wald (Inverse Gaussian) distribution. 

The resulting model (WALD) provides, for the first time, an analytical expression for 
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calculating the escape probability of seeds from the forest canopy top, which were shown to 

be necessary conditions for LDD in other studies (Nathan et al. 2002b).   

We tested the realism and applicability of the WALD model by comparing simulated 

data to measured data from several different data sets, including data on forest trees, 

heathland shrubs and herbaceous grassland plants. For each data set, the WALD model 

predicted realistic dispersal patterns, whether the model was used to predict seed dispersal 

distances from measured plant and wind parameters or whether the inverse approach was 

used, predicting wind parameters from measured dispersal distances. We conclude from our 

results that the WALD model adequately describes seed dispersal by wind and performs better 

than previously existing analytical mechanistic models. It should be noted, however, that all 

measured dispersal data do not include rare LDD events and no mechanistic model, analytical 

or not, has been tested against measured LDD data so far.   

We also showed that the asymptotic behavior of WALD for large distances from the 

seed source can be fat-tailed.  We noted that other analytical models, such as the tilted 

Gaussian plume (with x dependent 3σ ) and the solution to the advection-diffusion equation 

exhibit tails that are “heavier” than WALD when 0→tV .  However, those models do not 

admit a finite variance for (infinitely) large distances.  For finite σ (i.e. turbulent flows), the 

WALD kernel admits a finite variance for large distances. 

We note that the other models were derived assuming the canopy is a passive source 

of seeds and does not alter the flow field within the canopy; hence, their resulting mixing 

length was linear, and their second moment (e. g. u w′ ′< > and w w′ ′< > ) were constant inside 

the canopy.     The WALD derivation uses second-order closure principles to estimate how 

foliage density modulates these flow statistics inside the canopy and how this modulation 

affects the parameters of the dispersal kernel.  The advantage of the WALD model over other 

analytical models is that it can be applied to a wide variety of wind-dispersed species and 
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ecosystems, and can be used to delve into the process of seed dispersal by wind. While this is 

a known advantage of mechanistic dispersal models over phenomenological models, 

phenomenological models have been favored for modeling seed dispersal in large-scale and 

complex ecological models, because previous mechanistic models were computationally too 

slow and impractical in estimating dispersal kernels over large domains. WALD maintains all 

the major strengths of the mechanistic modeling approach for seed dispersal while resolving 

its major weakness of reliance on intensive computations.   Even though the model was 

developed with several restrictive assumptions we conclude that the good agreement between 

measured and modeled kernels is quite encouraging, and suggests robustness to these 

simplifications.   
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APPENDIX-1: 

As earlier stated, upon substituting equation (3) in equations (1) and (2) to eliminate time, the 

corresponding Fokker-Plank equation becomes 
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In the context of seed dispersal, the release is assumed to take place at rx ,3  with zero vertical 

velocity and the “initial” condition is )()()0;,( 3,33133 uxxxuxp r δδ −==  as before.   

Assuming that the seed movement stops once it reaches the ground surface (i.e., no re-

suspension), the relevant boundary condition at 03 =x  is an absorbing boundary 

with 0);,0( 133 == xuxp .  The solution of the above second-order problem and especially the 

solution of the distribution of the position 1x  of seeds reaching the ground is quite 

complicated (Masoliver and Porra 1995). 

 However, the problem can be considerably simplified by noticing that the stochastic 

equation for the velocity 3u  is the well-known Ornstein-Uhlenbeck process, whose long-term 
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solution is a Gaussian probability density function with zero mean, variance 
α
β , and 

autocorrelation function equal to ατ−e . Therefore with the assumption  

that α  may be considered to be large enough so that the effects of the correlation of 3u  are 

negligible relative to the setting time in the evolution of 3x , the second-order process can be 

reduced to the following first-order one,  

lddxdx Ω+−= σγ 13 ,         (A4) 

where 
α
βδσ =  (Gardiner 1990). The corresponding Fokker-Plank equation is  
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with “initial” conditions )()0;( ,3313 rxxxxp −== δ and boundary condition 0);0( 13 == xxp . 

The above equation represents a classic diffusion process (Brownian motion) with constant 

downward drift that can be solved analytically using standard stochastic calculus procedures 

(Cox and Miller 1965).   

Note that upon replacing the estimates of α , β , andδ in 
α
βδσ = , we obtain 
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APPENDIX-2:  

To estimate the WALD parameters, the vertically averaged mean velocity and standard 

deviation of the vertical velocity are needed from wind speed measurements above or at the 

top of the canopy.  Here, we show how the profiles of the velocity statistics >< u , >′′< wu , uσ , 

vσ , and wσ can be computed.  Vertically averaging wσ and >< u yields the desired flow 

variables for the WALD parameters.  Given the mean velocity at the canopy top ( ( )u h< > ), 

the Massman and Weil (1999) model (MW99) predicts the velocity statistics at any depth z  

inside the canopy to be 
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The MW99 computes the zero displacement height from the centroid of the momentum sink 

using: 
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Above the canopy, the flow is assumed to attain its atmospheric surface layer state with 
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For this study, we used the long-term sonic anemometer data above the canopy during the 

dispersal seasons and determined that 1.2=uA , 8.1=vA , and 1.1=wA .   

In WALD, vertically averaged mean velocity and vertical velocity standard deviation are 

computed via 
0

1 ( )
h
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σ∫ , respectively. 
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APPENDIX – 3:  

In this appendix, we show graphically all 51 measured dispersal kernels from the Duke Forest 

seed release experiments along with the predicted kernels by the three models (Figure 2).  The 

experimental conditions along with the computed vertically averaged mean wind velocity and 

wσ for each kernel is summarized in Table 1 and the regression analysis used to assess the 

model performance is shown in Table 2.  The panels in Figure 2 are organized by species type 

and release height.  In these experiments, all the inputs affecting WALD parameters are 

varied - release height varied by a factor of 2.5, wind speeds varied by a factor of 9, LAI 

varied by a factor of 4, and terminal velocity varied by a factor of 2. It is no trivial matter that 

a simple analytical model with no tunable parameters like WALD captures the variations of 

all these factors. 
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APPENDIX – 4:  

Uplifting probabilities, mean seed release height, and seed terminal velocities for Pinus taeda, 

Liriodendron tulipifera, Liquidambar styraciflua, Carpinus caroliniana, Fraxinus americana 

were reported in Nathan et al. (2002b) at the same tower location used in the manual seed 

release experiments.  Using the measured time series of *u  for the period reported in Nathan 

et al. (2002b), we estimate a time-averaged *u =0.3 m s-1 (see Figure 3).  We then employed 

the model in Appendix 2 to estimated σ and U needed for equation (6).  For each of the 5 

species, we estimated the probability of uplifting from equation (6) based the reported mean 

seed release height and terminal velocities in Nathan et al. (2002).  The overall agreements 

between measured and modeled uplifted probabilities are shown in Figure 3.  Using linear 

regression analysis ( ˆ ˆy m x b= + ; where x̂  and ŷ are modeled and measured variables) for the 

5 points in Figure 3, we found a coefficient of determination 2 0.99r = , 0.88m = , 

 0.00035b = , and a standard error of estimate SEE=0.002.  Given that WALD has no 

“tunable” parameters, the agreement between measured and modeled seed uplifting 

probabilities is encouraging and suggests that WALD can model necessary conditions for the 

occurrence of LDD. 
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Table 1: Summary of seed release experiments including the species (acne=Acer negundo,  

acru=Acer rubrum, acsa=Acer saccharinum, acsr= Acer saccharum, caca = Carpinus 

caroliniana, fram=Fraxinus americana, frpe=Fraxinus pennsylvanica, litu=Liriodendron 

tulipifera).  The measured release height ( 3,rx ), terminal velocity ( tV ), the leaf area index 

(LAI), and friction velocity above the canopy ( *u ) are also shown.  The modeled depth-

averaged mean velocity (U ) and vertical velocity standard deviations ( wσ ) within the canopy 

are also shown. The values of tV here are higher than earlier published values (Nathan et al. 

2002b) because seeds of different species were color-sprayed for enhancing detection and 

recovery. 

Date of 

Release 

Species tV * 

(m s-1) 

LAI  

(m2 m-2) 

rx ,3   

(m) 

*u  

(m s-1) 

U  ; wσ  

(m s-1) 

30 0.16 0.23; 0.09 

21 0.16 0.23; 0.09 

Nov. 2/00* litu,  

frpe,  

acne,  

caca 

1.50  

1.43  

1.50 

1.89 

1.2 

12 0.16 0.23; 0.09 

30 0.89 1.55; 0.61 

21 0.89 1.55; 0.61 

Nov. 28/00 Same as 

above 

Same as 

above 

0.9 

12 0.63 1.10; 0.44 

30 0.60 0.56; 0.27 

21 0.62 0.58; 0.28 

May13/01 acsa,  

acru 

1.10 

0.67 

4.9 

12 0.61 0.57; 0.27 

30 0.25 0.23; 0.11 June 25/01 acsa, 

acru, 

Same as 

above 

4.9 

21 0.20 0.19; 0.09 
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caca, 

frpe 

12 0.27 0.23; 0.11 

30 0.27 0.25; 0.12 

21 0.32 0.31; 0.15 

July 20/01 acsr  

fram  

caca  

1.74 

1.21 

Same as 

above 

4.9 

12 0.25 0.23; 0.11 

*Terminal velocity was measured for spray-marked seeds 

**In this particular experiment, all the seeds were simultaneously released from the source.  

Hence, the 30-minute friction velocity *u need not represent the correct mean wind conditions 

of the few seconds in which dispersal occurred.  In the remaining four experiments, seeds 

were released over a 30-minute period at each level. 
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Table 2: Comparison between measured and modeled dispersal kernels for all data points (n) 

using regression analysis.  The regression model ˆ ˆy m x b= + is used; where x̂  and ŷ are 

modeled and measured variables, respectively.  Since the kernels are all bounded between 0 

and 1, and to increase the sensitivity of this comparison at small probabilities thereby 

avoiding the mode, we compared the ( )1exp ( )p x−  rather than 1( )p x  (see Figure 2f).  The 

correlation coefficient ( r ) and the root-mean squared error (RMSE) are also shown.  We also 

report the same model comparisons for distances 1x exceeding 5 m and 1x exceeding 10 m to 

separate the effects of low 1( )p x  near the source from the low 1( )p x  at further distances.  We 

also conducted a student t-test to evaluate the hypothesis that the regression slope is different 

from unity and the correlation coefficient is different from zero.  We found that the resulting 

p-values for both hypotheses and both variables to be < 610−  indicating significant correlation 

but also significant bias in the slope from unity at the 95% confidence level. 

 

Model m  b  r  RMSE 

All points (n=459) 

WALD (proposed) 0.77  0.21 0.69 0.066 

Tilted Gaussian 0.69 0.28 0.55 0.077 

Advection-Diffusion 0.72 0.26 0.56 0.075 

Gaussian 0.69 0.27 0.58 0.077 

1x  > 5 m from source (n=408) 

WALD (proposed) 0.76 0.21 0.69 0.059 

Tilted Gaussian 0.67 0.31 0.64 0.066 

Advection-Diffusion 0.72 0.27 0.67 0.062 

Gaussian 0.61 0.36 0.62 0.071 
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1x  > 10 m from source (n=357) 

WALD (proposed) 0.68 0.31 0.67 0.051 

Tilted Gaussian 0.58 0.41 0.59 0.058 

Advection-Diffusion 0.62 0.38 0.61 0.057 

Gaussian 0.56 0.42 0.64 0.057 
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Table 3: Reported exponent of power-law dispersal kernel for wind dispersed seeds. 

Species Power-law decay 

Pinus halepensis  -1.63 to -1.94 obtained by fitting a power-law 

distribution to measured kernels (Nathan et al. 

2000).  Maximum distance ~ 120 m. 

 

Acer rubrum, Betula lenta, 

Fraxinus americana, 

Liriodendron tulipifera, Pinus 

rigida, Tilia americana, and 

Tsuga canadensis 

 

-2.0 to –3.0 obtained from fitting the 2Dt model to 

measured kernels (Clark et al. 1999).  Maximum 

distances not reported.  
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Cryptantha flava, Senerio 

jacobaea, Apocymum sibrica, 

Cirsium undulatum, Liatris 

aspera, Senecio jacobaea, 

Solidago rigida, Penstemom 

digitalis, Cassia fasciculata, and 

Geranium maculatum  

Data selected from Willson (1993) for the 

following two criteria: the dispersal mode is at 

least 1 m away from the source, and good 

statistical power-law fits (r2>0.6).  Maximum 

distance >150 m.  

 

-1.51 to –4.24 for species with special devices for 

wind dispersal1.   

 

-1.62 to –3.79 for species dispersed without 

special morphological devices or mechanisms 

 

-4.29 to –7.96 for species with ballistic dispersal 

Calluna vulgaris -4.7 to –10.3 obtained from fitting power-laws to 

measured kernels across different directions and 

for a wide range of wind speeds (Bullock and 

Clarke 2000). 

 

Erica cinerea -2.85 to –4.43 obtained as Calluna above 

1An exception is Tussilago farfara, with a reported exponent = –0.59 and maximum dispersal 

distance exceeding 4000 m reported for a pasture. 
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Table 4: Estimated parameters (µ′ and λ′ ) for WALD shown in Figure 1a.  Using these two 

parameters, the effective mean wind speed effU and vertical velocity variance 

effw,
2σ responsible for the measured tails are inferred along with the escape probability from 

the canopy (Pr(z>h)) assuming h =0.41 m. 

   

Species 

Variable 

Calluna Erica 

tV (m s-1) 1.14 1.58 

rx ,3 (m) 0.14 0.12 

µ′ (m) 1.02 1.04 

λ′ (m) 0.060 0.064 

effU (m s-1) 8.4 13.7 

γ  0.14 0.12 

effσ (m1/2) 0.57 0.47 

effw,σ (m s-1) 2.7 3.0 

Pr(z>h) 0.22 0.19 
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Table 5: The estimated parameters (µ′ and λ′ ) for WALD shown in Figure 1b.  Using these 

two parameters, the effective mean wind speed effU and vertical velocity variance 

effw,
2σ responsible for the measured tails are inferred.  For neutral conditions, the mean wind 

speed at z=10 m, the reference height, is 2.8 times the mean wind speed at the release height.  

The reported mean velocity range is 0.1-6.9 m s-1 with an hourly mean wind speed of 3.8 m s-

1 at the reference height (Soons et al. 2004). 

   

Species 

Variable 

Cirsium 

dissectum
 

Hypochaeris 

radicata 
 

Centaurea 

jacea 
 

Succisa 

pratensis 
 

tV (m s-1) 0.38 0.33 4.36 2.12 

rx ,3 (m) 
0.99 1.03 1.01 0.97 

µ′ (m) 3.68 3.18 0.28 0.54 

λ′ (m) 0.58 3.31 0.74 0.70 

effU (m s-1) 1.41 1.02 1.19 1.18 

effU (m s-1) at z=10 m 3.9 2.9 5.3 2.6 

γ  0.27 0.32 3.66 1.79 

effσ (m1/2) 
1.30 0.57 1.17 1.16 

effw,σ (m s-1) 
2.39 0.33 1.64 1.60 
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List of Figures: 

 

 

 

Figure 1a: Determiningµ′ ,λ′ and the concomitant effective mean wind for the Bullock and 

Clarke (2000) experiments.   Measured (open circles) dispersal kernels are derived by 

summing seeds from all seed traps along all directions.  The solid lines (model) are for 

µ′ ,λ′ shown in Table 3 obtained by a moment matching method between the Wald 

distribution and the measurements. 

 

Figure 1b: Measured (open circles) and modeled kernels (lines) for the grassland ecosystems 

described in Soons et al. (2004).  The solid line represents the fitted WALD obtained by first 

and second moment matching to the measured distances.  The solid dashed lines represented 

the modeled kernels for U = 6.9 m s-1, =h 0.5 m, rx ,3  and tV shown in Table 4.  For 

reference, we also show the modeled kernels for the lowest wind speeds (U = 0.1 m s-1).  For 

Centaurea jacea and Succisa pratensis, the resulting modeled kernels for U = 0.1 m s-1 are 

about < 1 cm from the source and are not shown for clarity. 
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Figure 2a: Comparison between modeled (line) and measured (open circle) dispersal kernels 

for seed releases in November 2, 2000.  The models include WALD (thick-solid), tilted 

Gaussian (dotted), advection-diffusion equation (dot-dashed), and the Gaussian (thick-

dashed).  All seeds were released at once from a given level.  The modeled kernel was 

computed using a 30 minute averaged u* for each seed release height. For species 

abbreviations, see Table 1. 

 

Figure 2b: Same as Figure 2a but (1) seeds were released in small clusters every 30 seconds 

during the 30 minute *u averaging interval, and (2) experiment carried out on November 28, 

2000. 

 

Figure 2c: Same as Figure 2b but for May 13, 2001. 

 

Figure 2d: Same as Figure 2b but for June 25, 2001. 

 

Figure 2e: Same as Figure 2b but for July 20, 2001. 

 

Figure 2f: Comparison between measured and modeled 1exp( ( ))p x− for all 51 kernels 

( 459n = ).  The regression statistics are presented in Table 2. 

 

List of Figures for Appendix 4: 
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Figure 3: Comparison between measured (circle) and calculated (star) seed escape 

probabilities (from equation 6) for the 5 species in Nathan et al. (2002b).  The ordinate axis is 

the normalized seed release height (normalized by the canopy height h =33 m) and the 

abscissa is the seed escape probability (Pr(z>h)). The time series of *u  above the canopy 

along with its time average are also shown. 
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Figure 1a: Katul et al. 
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Figure 1b: Katul et al. 
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Figure 2a: Katul et al. 
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Figure 2b: Katul et al. 
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Figure 2c: Katul et al. 
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Figure 2d: Katul et al. 
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Figure 2e: Katul et al. 
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Figure 2f: Katul et al. 
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