
Migrating Legacy Software Systems to CORBA based Distributed Environments
through an Automatic Wrapper Generation Technique

Hyeon Soo Kim
School of Comp. Eng. and Software Eng., Kum Oh National University of Technology

188 Shin Pyung Dong, Kumi, Kyung Buk 730-701, South Korea

James M. Bieman
Computer Science Department, Colorado State University

601 S. Howes St., Ft Collins, CO80523, USA

Abstract

One of the strategies for migrating legacy systems to
distributed object-oriented environments is wrapping.
Wrapping is a method of encapsulation that provides well-
known interfaces for accessing legacy systems. The advantage
of wrapping is that legacy systems become part of the new
generation of applications without discarding the value of the
legacy applications. There, however, are many styles for
interfacing with legacy systems. Application developers who
want to migrate legacy systems to new environments and to
use them have the burden of understanding and implementing
various interfacing techniques. To solve this problem, we
construct the extensible wrapping template classes for various
interfacing styles and present an automatic wrapper generation
method based on them.
Keywords: Legacy Software, Distributed Environments,
CORBA, Wrapper

1. Introduction*

The innovative changes of internet environments and the

introduction of CORBA eases the transition from mainframe
based centralized legacy systems to more flexible object-
oriented distributed systems. Here the legacy software systems
refer to system software and application software designed and
implemented with old technology (that is, without distributed
concepts and object technology). Although legacy systems
were implemented with old technology, they still provide value
by performing crucial work for their organizations, and usually
they represent a significant investment and years of

*This work was supported by postdoctoral fellowships program
from Korea Science & Engineering Foundation (KOSEF).

accumulated experience and knowledge [2].
According to Sneed[6], there may be three strategies for

introducing distributed object concepts into existing legacy
software systems. One strategy is to start from scratch and
redevelop all of the business application with the distributed
object concepts. This approach frees the developers from any
consideration of the existing systems. But, every function must
be reimplemented and tested in a new language in a new
environment, which is expensive and time consuming.

Another strategy is a reengineering approach. Engineers
convert the programs of existing systems to object-oriented
programs and distribute objects appropriately. This approach is
a promising method since it is not necessary to reimplement
functions whose functionalities are the same as the
functionalities of the older systems. However, code conversion
is not easy. Few tools and methods are available.

The third strategy is to wrap components of the existing
systems and to invoke them from the object-oriented
distributed environment. Wrapping is a method of
encapsulation that provides clients with well-known interfaces
for accessing server applications or components. The
advantage of wrapping is that legacy systems become part of
the new generation of applications without discarding the value
of the legacy applications. Wrapping is a compromise approach.
The construction of object-oriented distributed systems with
first or second approach is maybe the ultimate goal. But the
explosive increasing of demand for applications based on
internet technology and object-oriented distributed
environments does not permit the necessary time delay.
Wrapping is a realistic approach, since it is accomplished
easily and rapidly with current technology.

To use wrapping, application developers must understand
and implement the interfacing techniques to legacy systems,
and there are many styles of interfaces.

The goal of this research is to cope with the difficulties. We
investigate problems that should be solved in order to wrap
legacy systems and suggest an effective wrapping method. We
construct extensible wrapping template classes for various
interfacing styles and present an automatic wrapper generator
based on them to alleviate application developers’ burden. By
using the method, we are able to extend the usefulness of
legacy applications by facilitating their migration to CORBA
based distributed environments with minimum efforts.

The rest of the paper is organized as follows. In section 2,
we briefly introduce CORBA and object wrapping techniques.
In section 3, we explain the strategy for migrating legacy
systems to CORBA based distributed environments. In section
4, we describe the wrapper generation method. In section 5, we
present an example to demonstrate the effectiveness of wrapper
application. Section 6 describes related work. And finally
section 7 presents concluding remarks.

2. Backgrounds

2.1 CORBA

CORBA (Common Object Request Broker Architecture)
was developed by the Object Management Group, a
consortium aiming to achieve interoperability standards on all
levels of an open market for object technology. The goal
behind CORBA is to enable open interconnection of a wide
variety of languages, implementations, and platforms [5].
Figure 1 gives a detailed view of CORBA.

Software developments in CORBA environments are
performed at two sides: client-side and server-side. Server-side
application developer implements object implementations for
services, and then describes the interfaces to the provided
services with IDL (Interface Definition Language). A client-
side application developer makes reference to the IDL written
by a server-side developer, and implements client applications.

Figure 1. CORBA

2.2 Object wrapper techniques

Wrapping techniques provide a natural way of integrating
legacy systems with each other and with new software. Object
wrapping is related to new systems integration concepts,
including layering, migration, reengineering, reverse
engineering, and forward engineering. Mowbray et al. [4]
introduce some of these concepts and describe how they can be
applied to object wrapping.

1. Layering
Layering is a mapping from one form of application

program interface (API) to another such that it maps one set of
operations onto a completely different set. Layering can be
done without modifying the underlying API design. An
application example is the layering required for OpenDoc parts
to interoperate with OLE2 components.

2. Data Migration
It involves moving the data used at legacy systems to

another data model, for example, relational, extended relational,
or object-oriented database systems. Sometimes it is used to
map between database systems made by various vendors.
Wrapping involves adding layering code to provide access to
the other database. This approach focuses on reuse data rather
than the functions of legacy systems.

3. Reengineering Applications
Usually reengineering is performed to reduce costs, to

increase performance, and to enhance maintainability of the
system. The process of reengineering comprises that a system
is first analyzed, then changes are made to the system at the
abstract level and the system is reimplemented.

For example, consider a situation where a legacy system is
reengineered into an object-oriented system. The system model
maps the application domain modeled as objects and
associations into elements of the existing system, and an
analysis model is created. With this analysis model, the work is
performed to determine which parts of the existing system will
be reimplemented using object-oriented techniques. After a
new subsystem is designed using object-oriented techniques, it
should interface to the remaining old system components. At
this time, wrapping allows for the replacement of the old
system components with object-oriented components.

4. Middleware
Middleware can be divided into two categories: distributed

processing middleware and database and user interface
middleware. CORBA is an example of distributed processing
middleware. Database middleware acts as a mediator between

various database products and provides a common access
mechanism. The wrapped database middleware can become a
data brokering service and provides format conversion between
different formats and query conversion between query
language dialects.

5. Encapsulation
Encapsulation is the most general form of object wrapping,

it separates interface from implementation. CORBA
encapsulations hide differences in programming language,
location, operating system, algorithm, and data structure with
the IDL. Encapsulation can be used with the legacy system
when the system cannot be modified, because its code is
inaccessible. In this case, all access can be provided via the
wrapper. Encapsulation can also be used to partition and
componentize a legacy system. Each component can be
encapsulated separately, and then the system can be
reintegrated using object-based communications.

3. Migrating Legacy Systems to CORBA
Environments

Figure 2 shows the migration of legacy systems to CORBA

environments. The client application in Figure 2 corresponds to
client in Figure 1. The wrapper objects, depicted by ovals,
correspond to object implementations in Figure 1. Using
CORBA, a server-side developer should implement each
wrapper object. This work burdens him with understanding
both interfacing techniques and functions of legacy system.
Actually, it is very difficult to understand and implement
various interfacing techniques. Our approach is to alleviate this
burden using an automatic wrapper generation method.
Because, using our approach, wrappers include the
implementation details for various interfaces to legacy systems.
Developers only need to understand services of legacy systems
and to describe them in IDL.

Figure 2. Migrating legacy systems to CORBA

4. Approach to Automated Wrapper Generation

4.1 Problems

To migrate legacy systems to CORBA environments, we
solve the following problems:
�� Variety of the interfaces to legacy systems

There are many interfacing styles in legacy systems, they
have different implementations each other and are also
dedicated. Thus, it is difficult for server-side application
developers to implement wrapper objects for legacy systems,
even though he understands some of the interfaces to the
legacy systems. To cope with this problem, we propose WTC
(Wrapper Template Classes) and an automatic wrapper
generator based on WTC. The automatic wrapper generator
sets developers free from needing to understand and implement
various interfacing techniques.
�� Representation of interfaces to legacy systems

To generate wrappers automatically, a server-side
developer should submit interfacing information for legacy
systems to an automatic wrapper generator. Thus, some
representations are required to describe easily the interfaces to
legacy systems. For this, we propose EIDL (Extended IDL). In
any case, a server-side developer should describe the services
of legacy systems with IDL for clients, in other words, he has
to describe the interfaces to wrapper objects. The EIDL
provides one way of describing the services of legacy systems
for clients and another way of describing actual interfaces to
legacy systems for a wrapper generator.

4.2 EIDL (Extended IDL)

The EIDL is an extended version of IDL. The EIDL is
composed of IDL parts and LI (legacy interface) parts. Figure 3
shows an example EIDL definition. Here, the commented part,
i.e. a line with leading double slashes, is LI part and the others
are IDL parts. Each operation in IDL parts has a corresponding
LI part.

Figure 3. An example of EIDL definition

...

...

ORB

Legacy
System

Legacy
System

Comm.
Line W.

Legacy
System

Socket
Wrap.

Client
Application

RPC
Wrap.

module Wrapper {
 interface C_lang {
 string compile (in string name, in string inFile);
 // <-CMDLN : execute “cc $0.c -o $0” ->
 ….
 };
 ….
};

1. IDL parts
This conforms to IDL style of CORBA. The client-side

applications are able to use the services of legacy systems only
via the interfaces declared in IDL parts of EIDL. In fact, these
interfaces are interfaces to the wrapper objects wrapping legacy
systems. Thus a client-side developer is able to use abstractly
the services of legacy systems without detailed knowledge of
actual interfaces.

2. LI (Legacy Interface) parts
The actual interfaces to legacy systems are described in the

LI parts. They consist of the legacy system interface type, the
name of actual service of the legacy system, and arguments
transferred to the legacy system. A server-side developer writes
this part with appropriate commands as if he uses services of
the legacy system in a stand-alone environment, except that he
adds an interface type. For example, to use the C language
compiler, he just writes, “cc $0.c –o $0“. Here, $0 means the
first parameter of an IDL operation. It maps name in this
example.

4.3 WTC (Wrapper Template Classes)

In this research, we categorized interfacing styles of legacy
systems as follows: Command line, Socket, File, Signal, RPC,
FIFO. For this work, we referred to reference [4] entitled
‘Essential CORBA’. We implemented wrapper template classes
corresponding to the identified interfacing styles, respectively.
The class hierarchy for WTC is shown in Figure 4. Here, the
lowest classes are template classes. This figure shows each
wrapper object, depicted by an oval, which is instantiated from
the template classes. Of course, the above categories for
interfaces may not cover all the interfacing styles of legacy
systems. Because, however, the currently developed classes
may cover many interfacing styles of the existing legacy
systems, it will be not difficult to actually apply these classes.

Figure 4. Wrapper Template Classes Hierarchy

4.4 Automatic wrapper generation steps

1. parsing step
The wrapper generator accepts an EIDL file as input, and

then compiles it. At this step, the wrapper generator finds out
the interface types and operations of legacy systems. The
arguments of each operation of legacy systems are also
processed. That is, the arguments (i.e. $0, $1, etc.) in LI parts
are replaced by the corresponding parameters of the operation
in IDL parts appropriately. For example, ‘$0’ is replaced by
‘name’ in the case of an example in Figure 3.

2. inheriting step
After the interface types of legacy systems are determined,

the wrapper generator searches WTC to select appropriate
classes. Each interface type inherits one concrete class from its
template class. The arguments of each operation within
concrete classes are substituted by the concrete parameters
according to the relationships identified in step (1).

3. composing step
In CORBA, interfaces of server applications should map to

the interfaces of IDL. In our case, however, there exists a
situation that an operation name in IDL parts is not the same as
the name of the corresponding operation in the wrapper classes.
For example, see ‘compile’ and ‘execute’ in Figure 3. As a
solution, we use an example servant generated from the IDL
compiler (see Figure 6). It has the perfect structure of the
server object except it is in skeleton form. That is, it has the
same interfaces corresponding to IDL interfaces, but there are
no implementation parts for operations. This step composes a
complete wrapper object with an example servant and a
concrete class derived in step (2). Here, the former provides the
object structure and interfaces of operations, and the latter
provides implementation codes for operations.

Figure 5. Generated wrapper object

Interface

FIFOFileSocketCommand Line RPC Signal

Input-OutputCommunication

CL Wrapper Socket RPC Signal File FIFO

….
public java.lang.String compile (
 java.lang.String name,
 java.lang.String inFile
)
 ….
 File.save(name, inFile);
 String cmd = “cc “ + name + “.c -o “ + name;
 CommandLine.execute(cmd);
 ….
}

For example, a wrapper object in Figure 5 is generated
from an EIDL in Figure 3 using the wrapper generator.

Figure 6 shows an automatic wrapper generator and
surroundings. A server-side developer writes EIDL to describe
the services provided to client and compiles it using the IDL
compiler. At compile time, only IDL parts are compiled
because LI parts are treated as comments. The products of IDL
compiler are a server skeleton, a client stub and an example
servant, which is a language specific example class for server
applications. Again the EIDL is submitted to a wrapper
generator. As stated before, a server-side developer’s role is
merely to write an EIDL file. He does not have to implement
the interfacing techniques to legacy systems any longer.

Figure 6. A Wrapper Generator and Surroundings

5. Application Example

This section describes a simple distributed C language IDE

that simulates an integrated development environment usually
provided in a stand-alone system. We assume the situation that
Host A has no available C compiler and debugger but Host B
has them, and a client-side developer is in Host A. Figure 7
shows the C IDE structure in CORBA based distributed
environments. This system uses a wrapper generated by the
automatic wrapper generator. C IDE accesses the wrapper in
Host B via ORB and passes the messages to the wrapper. And
then the wrapper interacts with C compiler and debugger and
passes the results to C IDE via ORB inversely.

In this example, the C compiler and the debugger exist in
the same host. Of course, they can be in the different hosts,
respectively. Moreover, the client application developer does
not have to know the locations where they are located. He can
find them using the CORBA naming service.

Figure 8 shows a screen snapshot in Host A after compiling
a C program in Host B. The compiled results are shown at the
lower window.

Figure 7. A simple distributed C IDE

Figure 8. A screen snapshot after compiling

6. Related works

There is some prior work that addresses issues for
generating wrappers with semi-automatic generation or with
meta-wrapper style. Vidal et al.[8] suggested wrappers and
mediators to access data from heterogeneous databases or
legacy servers. To access multiple sources in a dynamic
environment, wrappers are rewritten by the task of capability
based rewriting (CBR), depending on the capability of each
source. However, the capabilities of the available source and
the representations appear very diverse since the rapid growth

CO RBA
Client

IDL
Com piler

W rapper
G enerator

W rapper
O bjects

EIDL
W TC

Stub

Skeleton

Exam ple

Host A Host B

ORB

C IDE

(CORBA
Client)

C
Compiler

W rapper

Debug
ger

of the Internet, and the emergence of representations such as
XML, to facilitate the exchange of data on the Web, has
dramatically increased the number of available sources. Every
time we access new resources, we would need to rewrite
wrappers. Vidal et al. introduced a meta-wrapper component
into the architecture and provided a single interface to the
mediator using the meta-wrapper component. Meta-wrapper
component, by providing a single meta-wrapper interface,
reduces the complexity of the CBR task of the mediator and
makes multiple sources transparent. This research is confined
to database domains and/or information retrieval domains on
the Web. Another limitation is that this approach is only used
restrictedly for applications that access documents or data on
the Web. It may be possible to provide a single interface using
the meta-wrapper component. That is, although the treated
resources have a number of types, the methods that treat them
are roughly similar.

Ashish et al.[1] suggested information mediators for
obtaining information from multiple Web sources. Using this
approach, wrappers are built around individual information
sources to translate between the mediator query language and
the individual sources. The authors note that it is impractical to
construct wrappers for each Web source by hand for several
reasons: very large information sources, frequently added new
sources, and frequent changes to the format of sources. To cope
with this problem, the authors provided a semi-automatic
wrapper generation facility. Three steps are involved in
generating a wrapper for a Web source: structuring the source,
building a parser for the source pages, and adding
communication capabilities. This approach, like the approach
of Vidal et al., is applicable to only the Web sources.

There is work of Souder and Mancoridis [7] employs
wrappers for securely integrating legacy systems into a
distributed environment. Such wrappers provide their own
layer of security between the security domains of the host and
the distributed object system to protect the application against
malicious users and the host from malicious applications.

7. Concluding Remarks

In this paper, we present the wrapping technique that
enables various legacy systems to be reused on CORBA based
distributed environments without any changes to them. To
mitigate the burden of application developer who wants to use
legacy systems on CORBA based distributed environments, we
suggest an automatic wrapper generation method based on
extensible wrapping template classes. The benefits of this
research are as follows:
�� Enhancement of reusability

By using previously developed programs through wrapper

objects, we can reuse them at the level of executable codes.
�� Reduction of software development cost

The previously developed programs have high reliability
since they have been used and tested for a long time. Rather
than redesign and redevelop programs with the same
functionality, wrapping legacy systems should reduce both
development and testing cost.
�� Location transparency of server applications

CORBA wrapper objects for server applications have a
location transparency feature via the naming service, one of the
CORBA common services. Thus, although wrapper objects can
be located any location on the network, the developer who uses
wrapper objects is able to construct client applications without
any consideration about the locations of server applications.

8. References

[1] N. Ashish and C. A. Knoblock, “Semi-automatic Wrapper

Generation for Internet Information Sources”, in Proc. of
2nd Int’l Conf. on Cooperative Information Systems, 1997,
pp.160-169.

[2] M. Battaglia, G. Savoia and J. Favaro., “RENAISSANCE:
A Method to Migrate from Legacy to Immortal Software
Systems”, in Proc. of CSMR’98, IEEE Computer Society,
1998, pp.197-200.

[3] N. Ganti and W. Brayman, The Transition of Legacy
Systems to a Distributed Architecture, John Wiley & Sons,
1995.

[4] T. J. Mowbray and R. Zahavi, The Essential CORBA:
System Integration Using Distributed Objects, John Wiley
& Sons, 1995.

[5] R. Orfali and D. Harkey, Client/Server Programming with
JAVA and CORBA, John Wiley & Sons, 1998.

[6] H. M. Sneed and R. Majnar, “A Case Study in Software
Wrapping”, in Proc. of ICSM’98, IEEE Computer Society,
1998, pp. 86-93.

[7] T. Souder and S. Mancoridis, “A Tool for Securely
Integrating Legacy Systems into a Distributed
Environment”, in Proc. of Sixth Working Conf. on Reverse
Engineering, 1999, pp.47-55.

[8] M. E. Vidal, L. Raschid, and J. R. Gruser, “A Meta-
Wrapper for Scaling up to Multiple Autonomous
Distributed Information Sources”, in Proc. of 3rd Int’l Conf.
on Cooperative Information Systems, 1998, pp.148-157.

