Chapter 22
Electronic Commerce System Case Study

The Electronic Commerce System case study is a highly distributed World Wide Web-based application. The solution uses software agents as intermediaries between user interface clients and servers. In addition object brokers provide a standardized interface to several heterogeneous legacy databases.

22.1 Electronic Commerce Problem

In the electronic commerce problem, there are customers and suppliers. Each customer has a contract with a supplier for purchases from that supplier, as well as one or more bank accounts through which payments to suppliers can be made. Each supplier provides a catalog of items, accepts customer orders, and maintains accounts with each customer for receiving payment.

A customer is able to browse through several World Wide Web-base catalogs provided by the suppliers and make selections of items that need to be purchase. The customer’s order needs to be checked against the available contract to determine if there is a valid customer contract with the supplier, which will be used for charging the purchase. Each contract has operations funds committed to it. Ti is necessary to determine that sufficient funds are available for the customer order. Assuming that the contract and funds are in place, a delivery order is created and sent to the catalog supplier. The supplier confirms the order and enters a planned shipping date. As time passes the shipping order is monitored and both supplier and customer a notified if there is a shipping delay. When the order is shipped, the customer is notified. The customer acknowledges when the shipment is received, and the delivery order is updated. After receipt of shipment, authorization for payment of the invoice is made. The invoice is checked against the contract, available funds, and delivery order status, after which the invoice is sent to accounts payable, which authorizes payment of funds. Payment is made through electronic funds transfer from the customer bank to the supplier bank. The application uses several legacy databases, so an object broker technology, such as CORBA, is required.
22.2 Use Case Model

The use case model for the Electronic Commerce System is depicted in Figure 22.1. There are three actors, the Customer, the Supplier, and the Bank. The customer initiates three use cases: Browse Catalog, Place Requisition, and Confirm Delivery. The supplier initiates three use cases: Process Delivery Order, Confirm Shipment, and Send Invoice. These are the main use cases in the application; other; less important use cases for querying the servers and monitoring progress have been omitted for brevity.

[image: image1.emf]E-Commerce System

Browse Catalog

Process Delivery

Order

Confirm Shipment

Send Invoice Place Requisition

Confirm Delivery

Customer

Supplier

Bank

Figure 22.1 Electronic Commerce System: use cases
The use cases are briefly described next. In the Browse Catalog use case, the customer browses the various WWW catalogs and views various catalog items from a given supplier’s catalog. In the Place Requisition use case, the customer selects items from the catalog and then makes a requisition request. The system has to find a customer contract with the catalog supplier for which there are sufficient operations funds. If a valid contract is found, the system authorizes the requisition and sends a purchase request to the supplier. In the Process Delivery Order use case, the system retrieves a delivery order, determines that the inventory is available to fulfill the order, and displays the order to the supplier.
In the Confirm Shipment use case, the suppler prepares the shipment manually and then confirms the shipment. In the Confirm Deliver use case, when the shipment arrives at the customer, the customer confirms the delivery. The operations funds are committed for payment. In the Send Invoice use case, the supplier sends and invoice to the customer organization. After receiving confirmation of delivery, the invoice is approved by the customer organization’s Accounts Payable, and an electronic payment request is sent to the customer’s bank.
22.3 Agent Support for Electronic Commerce System
An approach to addressing the Electronic Commerce System by using software agents is outlined in this section and described in more detail in the next section. In this example, there are client agents and server agents, where each agent defines the business rules for some aspect of the electronic commerce domain. In this application, the client agents are user agents that act on behalf of users and assist users in performing their jobs. To achieve this, the client agents interact with server agents. The server agents receive requests from client agents. To satisfy a client agent request, a server agent typically interacts with server objects and with other agents.
The use of software agents is illustrated conceptually in Figure 22.2. In the Electronic Commerce problem, there are two types of client agents: the Customer Agent and the Supplier Agent. There is one instance of the Customer Agent for each customer and one instance of the Supplier Agent for each supplier. There are three server agents, with many instance of each. The server agents are:
· Requisition Agent, one instance for each requisition
· Delivery order Agent, one instance for each delivery order

· Invoice Agent, one instance for each invoice

[image: image2.emf]Customer Agent

Supplier Agent

Requisition Agent

Delivery Order Agent

Invoice Agent

Inventory

Database

Electronic

Payment

Accounts

Payable

Database

Delivery

Order

Database

Operations

Funds

Database

Contractor

Database

Requisistion

Database

Catalog

Database

Invoice

Database

Figure 22.2 Agent-base Electronic Commerce System: conceptual view
The Customer Agent is a client agent that acts on behalf of the human customer. The Customer Agent (see Figure 22.2) assists the customer who wishes to order one or more items from a catalog. It takes the customer’s request and interacts with the server agents to further the processing of the customer’s selection and to track the status. The customer may select several items from a catalog. When a customer completes catalog selection, the Customer Agent acts on behalf of the customer and initiates certain actions. In particular, when the customer makes a catalog selection, the Customer Agent sends a requisition request to a Requisition Agent.
The Requisition Agent is a server agent that queries various databases and communicates with various agents to ensure the processing of a customer initiated requisition. It queries the Requisition Database, Contracts Database, and Operations Funds Database, as well as communicating with the Customer Agent. In sends a contract query to the Contracts Database to determine if a contract is in place. It sends a funds query to the Operation Funds Database to determine if the funds are in place. If the response to both queries is positive, the Requisition Agent authorizes the requisition and sends the requisition status to the Customer Agent. The Customer Agent sends a purchase request to a Delivery Order Agent.
The Supplier Agent is a client agent that is instantiated to work with the supplier. It retrieves a delivery order from the Delivery Order Agent and helps the supplier fulfill the order. The Supplier Agent updates the inventory database, and the order status is sent to the Delivery Order Agent and Customer Agent. The customer eventually acknowledges receipt of the goods, and the delivery order is updated to reflect the receipt date.

The Supplier Agent sends the invoice an Invoice Agent at the customer organization. When notified by the Delivery Order Agent that the goods have been received, the Invoice Agent (see Figure 22.2) queries the Contracts Database and Operations Funds Database. If both responses are positive, the Invoice Agent authorizes payment and sends the invoice to the Accounts Payable Database, which updates the account. The Invoice Agent then sends the electronic payment to the customer’s bank.

22.4 Object Broker Support for Electronic Commerce System

Several legacy databases are used in this application. Each of these is a standalone database residing on a mainframe. There is a need for integrating these databases into the electronic commerce application, using an object broker such as provided by CORBA (see Chapters 4 and 13 for more information on object brokers).

The legacy databases in the customer organizations are the contracts databases, the operations funds database, the requisition database, the invoice database, and the accounts payable database. The legacy databases in the supplier organizations are the catalog database, the inventory database, and the delivery order database.

To integrate these databases into the electronic commerce application, the server objects that access the databases need to be database wrapper objects that encapsulate the details of how to read and update the individual databases. Thus the Requisition Sever, Contracts Server, Operations Funds Server, Accounts Payable Server, Invoice Server, Catalog Server, Delivery Order Server, and the Inventory Server are all database wrapper objects.

In addition, to maintain low coupling between clients, agents, and servers, an object broker name service is used to maintain the location of the specific services. Servers and agents register their services and locations with the object broker. When a service is required, the location of the service is determined by sending a message to the object broker. An example is given in Figure 22.3 in which a client agent, the Customer Agent, determines from the Broker the location of a server agent, the Delivery Order Agent. The Customer Agent then communicates directly with the Delivery Order Agent.

[image: image3.emf]: Broker

aDeliveryOrderAgent aCustomerAgent

1: customerAgent

Broker

Request

2: service

Handle

3: customerAgent

ServiceRequest

4: deliveryOrder

AgentResponse

Figure 22.3 Object broker in Agent-based Electronic Commerce System
22.5 Static Modeling of the Problem Domain
A static model of the problem domain is developed and depicted on a class diagram (see Figure 22.4). Because this is a data-intensive application, the emphasis is on the entity classes, many of which represent the data stored in the legacy databases. The database wrapper objects will map between the conceptual objects and the actual databases. Because each customer and supplier organization is liable to have its own specific legacy database, many individual solutions to the wrapper problem are like to exist. However, by using object broker and wrapper technology, it is possible to have a systematic way of integrating the disparate legacy databases into a general solution.

Figure 22.4 shows the entity classes for all the important problem domain entities and the relationships among these classes. The classes include the Requisition, Contract, Operations Funds, Payment, Invoice, Catalog, Delivery Order, and Inventory class.

[image: image4.emf]<<entity>>

Invoice

<<entity>>

Payment

<<entity>>

DeliveryOrder

<<entity>>

Contract

<<entity>>

Requisition

<<entity>>

Customer

<<entity>>

Inventory

<<entity>>

Supplier

<<entity>>

BankAccount

<<entity>>

Caralog

<<entity>>

SelectedItem

<<entity>>

OperationFunds

1 1

1

1

Sent to

1

1

Created for

1 1 1 1..*

1..*

1

1

1

1 1..*

1

1

1

1..*

1

1..*

0..1

1

1

0..1

1..* 1

1

1

1

1

Is for

Created by

Maintained

By

Has

Authorize

Selected

from

Items

Maintained

In

Maintains

Maintained by

Commits

Uses

Figure 22.4 Static model for Agent-based Electronic Commerce System
The attributes for each class are shown in Figure 22.5.

[image: image5.emf]<<entity>>

Customer

customerID: Integer

address: String

telephoneNumber: String

faxNumber: Stirng

<<entity>>

DeliveryOrder

orderID: Integer

plannedShipDate: Date

actualShipDate: Date

creationDate: Date

orderStatus: orderStatusType

amountDue: Real

receivedDate: Date

<<entity>>

Contract

itemID: Integer

itemDescription: String

quantity: Integer

price: real

reorderTime: Date

<<entity>>

Inventory

contractID: Integer

maxPurchase: Real

<<entity>>

BankAccount

bankID: Integer

locationOfBank: String

bankAccountNumber: String

faxNumber: Stirng

<<entity>>

Invoice

invoiceID: Integer

amountDue: Real

invoiceDate: Date

itemID: Integer

uniteCost: Real

quantity: Integer

<<entity>>

SelectedItem

<<entity>>

Catalog

itemID: Integer

itemDescription: String

unitCost: Real

<<entity>>

Payment

paymentID: Integer

amount: Real

date: Date

status: PaymentStatusType

requisitionID: Integer

amount: Real

status: RequisitionStatusType

<<entity>>

Requisition

<<entity>>

OperationFunds

operationFundsID: Integer

totalFunds: Real

commitedFunds: Real

reservedFunds: Real

<<entity>>

Supplier

supplierID: Integer

address: String

telephoneNumber: String

faxNumber: Stirng

Figure 22.5 Classes in Agent-based Electronic Commerce System

22.6 Collaboration Model

For each use case, a collaboration diagram is developed, depicting the objects that participate in the use case and the sequence of messages passed between them.

22.6.1 Collaboration Model for Browse Catalog

The collaboration diagram for the first use case, Browse Catalog, is shown in Figure 22.6. The message descriptions are as follows:

[image: image6.emf]aCustomer

<<user interface>>

: CustomerInterface

A1:

Customer Input

A6: Catalog Output

<<business logic>>

: Customer

Agent

A2:

Customer Request

A5: Catalog Info

<<databases wrapper>>

: Catalog

Server

A3:

Catalog

Request

A4:

Catalog

Info

Figure 22.6 Collaboration diagram for Browse Catalog use case
A1: The customer makes a catalog request via the Customer Interface.

A2: The Customer Agent is instantiated to assist the customer. Based on the customer’s request, the Customer Agent selects one or more catalogs for the customer to browse.
_1322319754.vsd
Data

Invoice
Database

Customer Agent

Supplier Agent

Requisition Agent

Invoice Agent

Delivery Order Agent

Inventory
Database

Electronic
Payment

Accounts
Payable
Database

Delivery
Order
Database

Operations Funds
Database

Contractor
Database

Requisistion
Database

Catalog
Database

_1322319756.vsd
Text

<<entity>>
Invoice

<<entity>>
Payment

<<entity>>
DeliveryOrder

<<entity>>
Contract

<<entity>>
Requisition

<<entity>>
Customer

<<entity>>
Inventory

<<entity>>
Supplier

<<entity>>
BankAccount

<<entity>>
Caralog

<<entity>>
SelectedItem

<<entity>>
OperationFunds

1

1

1

1..*

1

1

Sent to

1

1

Created for

1

1

1

1..*

1..*

1

1

1

1

1..*

1

1

1

1..*

0..1

1

1

0..1

1..*

1

1

1

1

1

Is for

Created by

Maintained
By

Has

Authorize

Selected
from

Items
Maintained
In

Maintains

Maintained by

Commits

Uses

_1322319757.vsd

ActorClass

_1322319758.vsd

aCustomer

<<user interface>>
: CustomerInterface

A1:
Customer Input

A6: Catalog Output

<<business logic>>
: Customer
Agent

A2:
Customer Request

A5: Catalog Info

<<databases wrapper>>
: Catalog
Server

A3:
Catalog
Request

A4:
Catalog
Info

_1322319755.vsd
: Broker

: CustomerInterface

: CustomerInterface

aDeliveryOrderAgent

2: service
Handle

3: customerAgent
ServiceRequest

4: deliveryOrder
AgentResponse

aCustomerAgent

1: customerAgent
Broker
Request

_1322319753.vsd
System

E-Commerce System

Browse Catalog

Process Delivery
Order

Confirm Shipment

Send Invoice

Place Requisition

Confirm Delivery

Customer

Supplier

Bank

