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Section 1 

Introduction 

1.1  Purpose of the Report 

1.1.1  Background of the Report 
MITRE is developing a methodology for analyzing the performance and cost of future 

national command-control and information systems, emphasizing so-called sensor to shooter 
systems. The methodology is named CAPE, which stands for C4ISR analytic performance 
evaluation. The CAPE methodology supports MITRE in its role as a systems engineer for 
national C4ISR systems.1 

CAPE involves the extensive use of mathematical models and computers to estimate 
system performance and cost. Though many MITRE project briefings and reports describe 
the results of CAPE modeling, heretofore MITRE has not provided general documentation of 
how its staff constructs and uses mathematical models in applying the CAPE methodology.  

1.1.2  Objective 
This report provides general documentation of the purposes, technical basis, and 

fundamental methods of CAPE modeling. 

1.1.3  Anticipated Benefits 
The report will help MITRE’s sponsors to understand the technical basis of CAPE 

modeling. It will clarify the CAPE methodology for them, create a common terminology and 
framework for discussing C4ISR modeling with MITRE staff, and provide them the 
information necessary to judge the general suitability of CAPE models for specific analyses. 
The report will also serve MITRE’s own staff for internal training in CAPE modeling and for 
the development of databases and libraries to support the CAPE methodology. It will 
facilitate communication between the builders of CAPE models and their MITRE colleagues. 

1.2  Organization of the Report 
The report covers the following topics: 

1. Introduction – Purpose of the report, organization, background, related documents 

                                                 
1  “C4ISR” stands for Command, Control, Communications, Computers, Intelligence, Surveillance, and 

Reconnaissance. See the Glossary for further information. 
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2. Overview of the CAPE Methodology – Purpose, scope, and uses of the CAPE 
methodology; distinctive principles of CAPE modeling; existing CAPE models; 
hardware and software for CAPE models 

3. The Inputs and Outputs of CAPE Models  

4. Modeling Operational Processes with CAPE – Characteristic C4ISR processes and 
how they are represented in CAPE models 

5. APPENDICES – Justification of the CAPE Principles, Deriving a Model of Target 
Movement, Glossary 

1.3  The Origin of CAPE Modeling 
In the late 1980s, Henry A. Neimeier began developing a collection of useful analytic 

techniques for modeling system performance, applying them in many MITRE projects.2 The 
techniques include methods for modeling “analytic queues” and using “analytic risk 
evaluation,” as well as other methods described below. They also include techniques for 
implementing such modeling with two software packages named Analytica (originally 
named Demos) and Extend.  

In the mid-1990s, Roy C. Evans, Jr., originated a continuing and expanding series of top-
level C4ISR investment analyses for MITRE’s sponsors. He built the first mission-oriented 
analytical model, CAPSTONE, using Demos. As input to Demos, he used Extend to 
calculate C4ISR system-level estimates of technical performance.  

Evans then enlisted Neimeier to bring his analytic system modeling techniques to bear on 
particular signals-intelligence system-design issues in the context of national and theater 
imagery and other ISR capabilities. The analysis that resulted was named Sensor to Shooter. 
Neimeier first used Extend simulations for this work. He later transferred the simulation 
model to Demos.   

In 1997, under Evans’s direction, several members of MITRE’s staff, including 
Neimeier, were using analytic system modeling techniques and Analytica to model different 
aspects of the performance of national surveillance and reconnaissance systems. It was then 
that the name CAPE originated, at Dr. Russell Richards's suggestion, as an umbrella phrase 
to signify the general modeling methodology the analysts were using and applying to C4ISR 
studies. The analysts’ work was part of the Department of Defense’s C4ISR Mission 
Assessment study (CMA).  In addition, new models of battlespace awareness (BAM) and 
air/land/maritime force engagement (ALMEM) were created and first used at about this time. 
The CMA and its follow-on studies had participants from many Defense Services and 

                                                 
2  See the bibliography in the section immediately below. Also see “Analytic” in the Glossary. 
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Agencies, as well as from several Federally Funded Research and Development Centers and 
other Defense contractors. 

During the CMA study, analysts at both MITRE and the Secretary of Defense’s C4ISR 
Decision Support Center (DSC) embraced the CAPE methodology when they found that 
current military operations research models and approaches would not satisfy their analytic 
needs.  They needed tools to explore a large set of C4ISR study questions quickly, identify 
key factors, compare alternative hypothetical combinations of new C4ISR capabilities in 
terms of mission effectiveness, and to provide an analytic umbrella connecting the results of 
detailed system level analyses in a sensible, mission-oriented context.  These analysts knew 
that the existing models either did not address the C4ISR domain explicitly, addressed it 
poorly, or they required too much time and effort for data collection and analysis.3  

1.4  Related Documents 

1.4.1  Technical Papers on Techniques of Modeling 
Analytic queue 

• Neimeier, H. A., “A New Paradigm for Modeling the Precision Strike Process” 
(Unclassified), in the Proceedings of the 1996 IEEE Military Communications 
Conference (SECRET) 

• Neimeier, H. A., “Analytic Network Queuing,” a paper presented in Stirling, 
Scotland, at the International System Dynamics Conference, 1994. 

                                                 
3  Here is the basis for these findings: Admiral Owens, Vice Chairman of the Joint Chiefs of Staff, asked the 

Military Operations Research Society to conduct a workshop on Joint Warfare Capability Assessments 
(JWCAs) in October 1995. Dr. Stuart Starr of MITRE chaired the C2IW working group. That working 
group concluded that the tools to support JWCAs in the area of C2IW were deficient. Admiral Owens then 
created the C4ISR Decision Support Task Force to look at current US capabilities to do C4ISR studies. Dr. 
Russell Richards of MITRE chaired the working group on assessing the capabilities of current tools. His 
working group found that the tools (models and simulations) built by the Services had a stovepipe 
orientation and most had major deficiencies with respect to supporting Joint assessments of C4ISR. The 
working group produced a paper summarizing the input from 80 or so organizations (government, FFRDC, 
and contractors). In all, a total of over 700 tools were identified as being used to support C4ISR analyses. 
However, the working group’s assessment was that there were many serious deficiencies for supporting 
JWCAs, JROC decisions, QDRs, and so forth. The DSTF recommended the establishment of the C4ISR 
Decision Support Center and the C4ISR Joint Battle Center to provide core organizations with a focus on 
joint studies of C4ISR. Both organizations were created. 
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Analytic risk evaluation 

• Neimeier, H. A., “Analytic Uncertainty Modeling Versus Discrete Event Simulation,” 
Phalanx, March 1996. 

• Neimeier, H. A., “Use of Response Surfaces and Utility Functions in Nonlinear 
Multiattribute Risk Simulation,” Sixth AIAA/USAF/NASA/ISSMO Symposium on 
Multidisciplinary Analysis and Optimization, Bellevue, Washington, 4–6 September 
1996. 

• Neimeier, H. A., “Analytic Uncertainty Modeling,” a paper presented in Stirling, 
Scotland, at the International System Dynamics Conference, 1994. 

• Neimeier, H. A., “Nonlinear Multiattribute Risk Simulation,” unpublished paper, no 
date 

• Neimeier, H. A., “Nonlinear Multiattribute Risk Simulation Using Response 
Surfaces,” unpublished paper, no date 

1.4.2  Technical Papers on CAPE Analyses 
• Parker, S. K., Modeling the Collection and Exploitation Trade-Off in the C4ISR 

Mission Assessment Study, MITRE Technical Report 98W0000042, May 1998.  

• Belldina, J. S., Neimeier, H. A., Pullen, K. W., Tepel, R. C., An Application of the 
Dynamic C4ISR Analytic Performance Evaluation (CAPE) Mode,. MITRE Technical 
Report 98W0000004, December 1997.  

• Richards, R. F., Neimeier, H. A., Hamm, W. L., Alexander, D. L., “Analytical 
Modeling in Support of C4ISR Mission Assessment (CMA),” a paper published in 
the proceedings of the International Command and Control Conference, 1997. 

• Neimeier, H. A., “A New Paradigm for Modeling the Precision Strike Process,” a 
paper presented at MILCOM 96. 

• Neimeier, H. A., “Precision Strike Process for Mobile Targets,” 64th MORS 
Symposium, Fort Leavenworth, Kansas, 18–20 June 1996. 

1.4.3  Briefings on CAPE Topics 
• Kuskey, K. P. and Tepel, R., “A High-Level Model of Target Location, Movement, 

and Engagement,” 67th MORS Symposium, West Point, New York, 24 June 1999. 

• Belldina, Jeremy, “Weapon/Target Pairing Algorithm Used in Dynamic CAPE,” 
INFORMS Military Applications Society Conference, Huntsville, AL, May 1998. 
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• Neimeier, H. A., “C4ISR Analytic Performance Evaluation (CAPE) Models,” 
INFORMS Military Applications Society Conference, Huntsville, AL, May 1998. 

• Parker, S. K., “Modeling the Performance of Imagery Exploitation Systems,” 
INFORMS Fall Conference, Dallas, Texas, October 1997. 

• Neimeier, H. A., “Precision Strike Attack Process for Mobile Targets,” 64th MORS 
Symposium, Fort Leavenworth, Kansas, 18–20 June 1996. 

1.4.4  Other Documentation of CAPE Models 
• Rueda, Catalina, “Documentation of the Dynamic CAPE Model,” August 1998, 

unpublished. 

• Rueda, Catalina, “Documentation of the E-CAPE Model,” August 1998, unpublished. 

1.4.5  Other Papers 
• Davis, P., Starr, S., Thomas, C., “Report of Synthesis Panel,” MORS Mini-

Symposium on Quick Reaction Analyses and Methodologies (QRAM), October 1–3, 
1996. 

• Neimeier, H. A., and Gulledge, T., “Functional Economic Analysis of Purchasing at 
MITRE,” a paper presented in Stirling, Scotland, at the International System 
Dynamics Conference, 1994. 

• Neimeier, H. A., MITRE Abbreviated Functional Economic Analysis Tool (MAFEA), 
MITRE Technical Report 92W0000037, February 1992. 

• Neimeier, H. A., Performance and Sizing Models to Support IRS Tax Modernization 
System, MITRE Technical Report 88W00232, June 1989. 

• Neimeier, H. A., and Scholl, M. M., A Modeling Approach for Tax System 
Modernization (TSM), MITRE Technical Report 88W00231, January 1989.  
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Section 2 

Overview of the CAPE Methodology 

The CAPE methodology, while broad, is applied to the domain of C4ISR systems within 
the context of federal decision making. This limited domain shapes the purpose, scope, and 
uses of CAPE analysis. 

2.1  The Purposes of CAPE Analysis 
Viewed from a variety of perspectives, one may describe the purposes of CAPE analysis 

as follows: 

• Support top-level, cross-functional planning and analysis in C4ISR organizations, 
where questions must be answered quickly, typically within two months, or be 
overcome by events. 

• Provide a framework for discussion of complex future systems – an analytical 
framework within which many people can share and test their intuition, judgment, 
and knowledge about the behavior of hypothetical new systems. 

• Visualize, understand, and estimate the benefits and costs of implementing alternative 
choices for future investments, doctrine, and organization of C4ISR functions and 
systems. Do this at the level of operational requirements and broad capabilities more 
than at the level of detailed system design. 

2.2  Scope of CAPE Analysis 
The elements of CAPE analyses include operational concepts, scenarios, environments, 

sensors, targets, collection processes, processing-exploitation-dissemination (PED) 
processes, command-control processes, communications, computers, and warfare processes. 
CAPE modelers spend much of their time gathering and analyzing information to build up 
their knowledge about the elements. 

The elements in CAPE analyses are usually conceptualized at the abstract level of 
aggregates, averages, and probability distributions instead of at the level of individual actors 
and events.  

The results of CAPE analyses, stated in terms of measures of effectiveness and 
performance, are usually developed at the analytical level of averages (expectations) and 
sensitivity analyses, not at the more detailed analytical level of probability distributions or 
risk profiles. On the other hand, probabilistic information is usually used in CAPE analyses, 
and probability distributions are sometimes calculated as intermediate results. 
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2.3  Uses of CAPE Analysis 
Analysts investigate two primary questions with the CAPE methodology: (1) Which 

system capabilities and characteristics have the most impact on benefit and cost? and (2) 
What are the estimated benefits and costs? The range of actual and potential inquiry with 
CAPE models is summarized as follows. 

2.3.1  Estimation of C4ISR Performance and Benefits 
The emphasis in CAPE analysis has been on performance and benefits. The CAPE 

methodology has been used to 

• Identify first-order relationships between C4ISR system characteristics and 
warfighting measures of effectiveness (MOEs) and measures of performance 
(MOPs); 

• Analyze C4ISR investment tradeoffs in terms of the investment-to-MOE connection, 
i.e., the effects of investments on warfighting effectiveness across the whole sensor-
to-shooter chain; 

• Quantify the contribution of alternative future C4ISR systems and concepts to 
warfighting effectiveness; and 

• Quantify the benefits of improvements in various systems and concepts using 
measures of performance and measures of effectiveness 

2.3.2  Estimation of C4ISR Costs 
While most CAPE analyses have emphasized system effectiveness, the CAPE 

methodology may also be used to analyze the cost implications of C4ISR systems. It is 
suitable for modeling the costs of acquisition, operations and maintenance, logistics, and 
R&D. It is suitable for calculating “rough order of magnitude” (ROM) cost estimates for 
alternative mixes of C4ISR systems. It has been used to estimate operational costs. 

2.3.3  Resource Allocation 
The CAPE methodology is compatible with the use of mathematical programming 

techniques to optimize the allocation of resources over competing designs or requirements 
for system elements. To date this method has not been utilized. 

2.4  Distinctive Principles of CAPE Modeling 
The purpose and scope of the CAPE methodology have led MITRE’s staff to three basic 

principles to guide all CAPE modeling. An understanding of the principles goes a long way 
toward explaining why any particular CAPE model was constructed the way it was. 



 
 

9 

2.4.1  Principle 1. Model Complex Uncertain Phenomena with “Aggregate” 
Probabilities 

Represent uncertain actors, situations, and events with probability distributions, either 
continuous or discrete, which aggregate more complex underlying phenomena. This 
approach “averages over” many potentially complex interactions instead of modeling the 
interactions explicitly. Practically, this approach enables rapid experimentation with the 
models to discover key factors and relationships. Here are two examples: 

Discrete random variable. Let us say the weather at any place and moment may be clear, 
cloudy, or rainy. In CAPE models, we “average over” all the complexity of moment-to-
moment and place-to-place fluctuations in weather and all the ways that military systems 
respond to the fluctuations. We assign unconditional probabilities, such as .5, .25, and .25, to 
represent the concept that whenever a sensor looks at any location the weather will be clear, 
cloudy, or rainy, respectively, regardless of what the weather was at any earlier time. These 
probabilities will represent the weather throughout the model, “averaging over” all the hour-
to-hour and place-to-place variations in weather that might be represented in an event-driven 
simulation model. 

Continuous random variable. An actor on the battlefield who stops will usually move 
again some time later. In CAPE models, we aggregate over all possible reasons for stops and 
starts and assign a probability density function to the “pause time” per stop. We do this not 
for individual actors, but for a whole class of actors. For instance, the pause (dwell time) per 
stop for a mobile command post could be an exponentially distributed random variable with 
a mean of 30 minutes. This probability density function for the random variable would then 
represent all kinds of mobile command posts throughout the analysis, “averaging over” all 
the complex interactions of one actor with another and with the environment that might cause 
the pause to be small or large. 

2.4.2  Principle 2. Strive for Simple Analytic Calculations of Probabilistic Results 
There are three aspects to this principle, all of which reduce the amount of calculation 

needed to answer a question about the main effects being modeled. First, always calculate 
results simply as averages (probabilistic expectations) without variances or risk profiles 
(probability distributions). In other words, focus calculations on the main effect itself, not on 
the variability of the main effect. Plan to use sensitivity analysis to explore the variability, 
but only as needed. Second, in probabilistic calculations, where several random independent 
variables may take on a range of values and combine in various ways as functions of the 
random variables, try hard to keep the whole analysis in terms of the parameters and 
moments of the distributions. In other words, avoid calculating the actual probability 
distributions of intermediate functions of random variables unless the distributions are very 
important to your results. Third, only as a last resort use numerical analysis or random-
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number generation and statistical sampling to find the moments or the distributions of the 
combined functions.  

2.4.3  Principle 3. Simulate Simply 
When a CAPE model is used to calculate a state history for a C4ISR dynamic 

probabilistic system, use a non-sampling, fixed-time-step method that approximates the 
inputs of successive time-steps as the expected values of the outputs of previous steps. This 
principle—using expected outputs of one time step as deterministic inputs for the next time 
step—focuses CAPE analysis on the main (first order) effects in the state history and avoids 
extensive calculations. It is inexact, but it is the most useful calculation that can be done 
without also calculating the probability distributions or moments of the outputs and using 
random-number generation and statistical sampling. 

* 

The three principles of the CAPE methodology produce C4ISR models that differ greatly 
from many existing models used for military operations research. Such existing models are 
used to statistically estimate the performance of systems by repeated next-event simulations 
of the systems’ operation. MITRE staff believe that the simplifications of the CAPE 
methodology, which avoids statistical sampling, are more appropriate to the class of 
problems they address than the other models. There are several reasons (see Appendix A). 

Implicit within the principles of CAPE modeling is the requirement that the analysts who 
build the models are sophisticated probabilistic thinkers. They should have a strong grasp of 
probability mathematics, dynamic systems, and of dynamic probabilistic systems, so that 
they can make the simplifications inherent in the principles while preserving the 
correspondence between the CAPE models and the real world. 

2.5  Existing CAPE Models 
The following descriptions of current CAPE models illustrate the variety of subject 

matter the CAPE methodology can cover. 

Air-Land-Maritime Engagement Model (ALMEM) – ALMEM is a dynamic model derived 
from Dynamic CAPE. It calculates joint performance in theater level conflicts in terms of 
attrition of enemy and own forces. Unlike Dynamic CAPE, for which the analyst determines 
the lengths of battle phases, ALMEM calculates the lengths of the battle phases, using force 
ratios and other factors. ALMEM finds out how long the battle lasts. It also finds out how 
much the battle costs, including such costs as materiel, operations and support, and veterans’ 
benefits. Some 200 variations of ALMEM have been used for various analyses. ALMEM was 
employed in Global Engagement 97 to model the impact of C4ISR actions on scenario 
outcome. Other versions were used to evaluate new theater architectures (DSC Task 2, 
IMINT/MTI CDA, and IOSA-2). 
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Close CAPE - Models ground combat as limited to a single division. It includes ground-
oriented sensors, special operations, placement of sensors on roads, area versus linear 
sensors, intelligence fusion (signals, imagery, and human intelligence). It uses scenarios from 
the Close Support End-to-End Assessment (CSEEA) study. 

Cruise Missile Defense – This model calculates the percentage of cruise missiles that can 
be engaged and destroyed for a given set of missile flight geometries. Defensive systems that 
are modeled include, airborne ISR sensors, ground based air defense systems, fighter aircraft 
defensive systems, on-board and off-board aircraft sensors and communication capabilities. 

Deep CAPE - Models the air strike mission against targets that are as deep as 350 km to 
determine the sensitivity of various measures of effectiveness to variations in such factors as 
imagery quantity and timeliness, communications delay, and “shooter” characteristics. 

Dominant Battlefield Awareness (DBA) - DBA is defined as sensing and understanding 
what is happening and then communicating that information in timely fashion to the forces 
that need to know what is happening. Based upon red forces and their movement 
characteristics, the DBA model calculates the DBA that can be achieved for a given mix of 
ISR capabilities. The model includes the effects of environment and enemy behavior on the 
amount and quality of data that can be collected and disseminated on a timely basis by 
intelligence, surveillance, and reconnaissance (ISR) assets. The measure of performance is 
the amount of information (area and points) collected and disseminated on a timely basis. 
The model also includes an aggregate cost estimate of the ISR assets needed to provide a 
given level of DBA. 

Dynamic CAPE - Models the effectiveness of the strike mission and supporting 
intelligence systems as affected by various strike and intelligence factors, including theater 
environment, target, sensor mix, sensor platform. Models 50 time periods, remaking 
platform-weapon-target assignments for each time period. With this model forces can be 
deployed gradually over time; and weapons, platforms, sensors, and targets are attrited daily. 

E-CAPE - Models the imagery-exploitation subsystem of the intelligence collection 
process to determine the sensitivity of exploitation throughput and delay to various factors 
such as the percentage of imagery sent out of theater for exploitation, the number of imagery 
analysts in theater, the exploitation rate, and the use of automated exploitation tools. 

Fuse CAPE - Evaluates multi-sensor fusion over a large environmental envelope. 

Geo CAPE - Extends Deep CAPE to model the effects of terrain masking and foliage and 
to produce a measure of “battlefield awareness,” calculated as the percentage of targets for 
which the location is accurately known. The computer display shows a map of the conflict 
region with target icons that are color-coded to show how well blue forces can identify their 
location. 
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Global CAPE - Models naval forces and operations in addition to Air Force missions and 
sensors. Weapons include strategic ballistic missiles. 

Integrated Overhead SIGINT Architecture (IOSA) Model - This model calculates the total 
volume of signals emitted that are of interest for a specified mission, the number of signals 
that are closed and the amount of data that is collected, received and down-linked by the 
overhead systems. The model groups detailed signals of interest into signal families with like 
electrical characteristics to reduce the computational requirements. The model allows the 
user to specify the mission of interest (e.g. JSEAD, DCA, counter proliferation, treaty 
oversight, etc.), the architecture of the overhead SIGINT system (altitude, aperture size, 
access parameters, etc.), the percent contribution of the overhead system versus the airborne 
collectors, and the country of interest.  

Probability of Closing the Kill Cycle - This model calculates the likelihood that a mobile 
target can be engaged by a weapon system if it has been detected by an ISR system. The 
model uses the speed of the mobile target after it begins to move, the average time between 
mobile target moves, the accuracy and latency of the ISR sensor and the response time and 
footprint of the weapon system to calculate the likelihood that the weapon system 
successfully kills the mobile target. 

SEAD CAPE - Models and evaluates the suppression of enemy air defenses over a large 
environmental envelope. New SA10 and SA12 surface to air missiles are evaluated. 

SEASCAPE - Models and evaluates present and future naval task force survivability 
against present and future anti-ship missile defense. Autonomous, task force cooperative 
engagement capability (CEC), and integrated CEC operations modes are evaluated. 

Tactical Ballistic Missile Defense (TBMD) Model – This model allows the user to specify 
the characteristics of the attacking TBM (e.g. geographic launch and aim points, burn time, 
velocity at burnout, etc.) and the number and geographic distribution of all of the family of 
system (FOS) TBM components that are to be modeled. The model calculates the number of 
TBMs that survive each segment of the TBM's flight regime (boost, mid-flight, exo-
atmospheric, and endo-atmospheric). The actual parameters of the TBM's ballistic flight path 
are calculated and the times to detect and engage along with the probability of kill for 
defensive systems are combined to assess the defensive system capabilities. 

2.6  Software and Hardware for CAPE Models 

2.6.1  Overview of Software and Hardware 
MITRE staff have built CAPE models with Analytica and Extend, which are commercial 

off-the-shelf software applications. Analytica and Extend run on both Macintosh and 
Windows personal computers.  
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Analytica is the preferred tool to rapidly prototype new CAPE models, often in a matter 
of hours. Analytica’s graphic user interface makes it easy for analysts to demonstrate models 
to subject matter experts and then to adapt the models “on-the-fly” to reflect reality more 
accurately. However, Analytica is not currently computationally efficient for dynamic 
models. Extend is efficient. Another current drawback of Analytica is that it does not provide 
a procedural programming language. When a CAPE model involves a complex algorithm, 
such as a numerical integration, a programming language is virtually indispensable. Extend 
has such a language. 

Therefore, once a CAPE model stabilizes (few changes are being made), MITRE staff 
often convert the model from Analytica to Extend to reduce running time or to enable better 
algorithms. When dynamic models are involved, Extend is 30 to 500 times faster than 
Analytica and requires one-tenth the memory. (MITRE staff have partially automated the 
conversion of models from Analytica to Extend.)  

Though MITRE staff have selected Extend for CAPE modeling, any other software 
development package producing compiled code (e.g., C or FORTRAN) could be used. 

2.6.2  Analytica 
Lumina Decision Systems, Inc. of Los Gatos, California is the source of Analytica.4 The 

software is available for Windows 95/98/NT 4.0 and the Macintosh OS. Lumina describes 
Analytica as follows: “Analytica is a visual software tool for creating, analyzing, and 
communicating quantitative models. It provides an alternative to the spreadsheet, providing 
graphical influence diagrams to show qualitative structure of models, hierarchical models to 
organize complicated models into manageable models, and intelligent arrays with the power 
to scale simple models up to handle large problems.”  

CAPE modelers use Analytica for its “intelligent arrays,” which might be described as 
hierarchical, multi-dimensional spreadsheets linked via equations. The intelligent arrays 
support quick visual modeling of multi-dimensional concepts, automatically determining the 
order of calculation for all intermediate results as the user reconfigures and reconnects 
various parts of the model. Another capability of Analytica is dynamic modeling, where the 
outputs of one time period are used as inputs for the next time period. CAPE modelers use 
this Analytica capability, but not extensively because it slows down the computations. 
Instead, when dynamic modeling is important, MITRE’s CAPE modelers use Extend.  

Analytica has a strong capability for probabilistic modeling through Monte Carlo 
methods (and variations thereof). However, the CAPE methodology avoids such probabilistic 

                                                 
4  Lumina Decision Systems, Inc.: 1-408-354-1841 or toll-free 1-877-6-LUMINA; or  

http://www.lumina.com 
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methods in the interests of quick calculation. Thus the CAPE methodology uses Analytica 
minus its probabilistic support.  

While Analytica may be used to represent influence diagrams, it does not have 
mathematical programming algorithms to solve influence diagrams (or decision trees) for 
optimal decisions. If CAPE modelers should wish to find optimal mixes of systems, they will 
need to extend Analytica’s capability, either by embedding optimization into an Analytica 
model or by drawing upon another software tool that has solution algorithms, such as DPL 
by Applied Decision Analysis, Inc., of Menlo Park, California.5  

2.6.3  Extend 
Imagine That, Inc. of San Jose, California is the source of Extend.6 The software is 

available for DOS, Windows 3.1/95/NT and the Macintosh OS. Summarizing from the web 
page: Extend is a dynamic, iconic simulation environment with a built-in development 
system for extensibility. It enables a discrete-event, continuous, or a combined discrete-
event/continuous process or system to be modeled. Extend has libraries of pre-built blocks 
that can be accessed from a drop and drag menu. For custom effects, functions of several 
blocks can be combined into one through hierarchy or by using an equation editor. Or custom 
blocks can be built using Extend’s built-in C-like language (Mod-L) and dialog editor. 
Models built with Extend are compiled before operation.  

Extend is used by MITRE staff to implement CAPE models because Extend is a 
convenient general programming environment providing fast compiled code, and because it 
provides good visualization functions for graphically portraying results. For CAPE models, 
any compiled language with good graphical functions could be used instead of Extend. 
MITRE staff do not use Extend’s probabilistic simulation capabilities for CAPE models, 
since the principles of the CAPE methodology rule out probabilistic simulation in the 
interests of short computations and simple sensitivity analyses. (On the other hand, MITRE 
staff do use Extend’s simulation capabilities outside of CAPE models to develop parameters 
for use in CAPE models.) Though speed and memory are gained by converting a CAPE 
model from Analytica to Extend, one loses Analytica’s automated “intelligent array” 
capability to choose the order for calculating all intermediate results. With Extend, the model 
builder must determine and specify the order in advance or provide an algorithm for 
choosing the order. If the model is changed, the order may need to be revised. 

 

                                                 
5  See Applied Decision Analysis’s DPL web page: www.adainc.com/sw/whatis.html. 

6  Imagine That, Inc.: 1-408-365-0305; or http://www.imaginethatinc.com 
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Section 3 

The Inputs and Outputs of CAPE Models 

3.1  Introduction 
Each CAPE model is built in more or less modular fashion, but there is currently little 

commonality or uniformity of the modules across the models. That is, a modular CAPE 
architecture has not been formalized. Though all CAPE models reflect the same design 
principles and have similar inputs, outputs, and processes, in a formal sense each is ad hoc. 
MITRE staff are considering how to modularize the elements of the models. 

As a basis for describing CAPE models in this report, we consider the three broad ways 
the models represent the real world:  

1. Inputs – decisions, initial conditions, constraints, assumptions, uncertain events; 

2. Processes – interactions of the inputs; and  

3. Outputs – measured results of the processes. 

This section of the report describes and illustrates the inputs and outputs that have been 
modeled in various CAPE analyses. By reviewing the section, the reader will appreciate the 
level of aggregation and fidelity used in the CAPE methodology. Because the emphasis in 
CAPE is on performance, the order or presentation begins with the outputs and then 
describes the inputs that cause the outputs. Section 4 of the report describes the processes by 
which inputs are transformed to outputs. 

3.2  Outputs – Measures of Performance and Effectiveness 
The most important outputs for several CAPE models are described here. As is implicit 

in Principle 2, the outputs are always expected values, not probability distributions. 

3.2.1  ALMEM 
• Lengths of campaign phases 

• Percentage of targets killed 

• Attrition of own forces 

• Attrition of enemy forces 

• Territory controlled 

• Cost – 20 year marginal cost of force structure and C4ISR 
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3.2.2  Deep CAPE 
Deep CAPE’s outputs are for a chosen day in the conflict (e.g., day 1, day 17). They 

show the successive reduction, by process phase, in the proportion of targets at risk. 

• Target elements sensed per day 

• Percentage of targets collected that are downlinked for processing 

• Percentage of targets that get through processing with sufficient time left for attack 

• Percentage of targets with adequate TLE (target location error) and time to attack 

• Percentage of targets that are at risk 

• Costs 

3.2.3  Dynamic CAPE 
The following cumulative and/or daily-expected results are calculated, by day, for 50 

days: 

• Targets killed and remaining targets (fixed and mobile/relocatable) 

• Targets at risk (percentage of remaining targets that can be successfully found and 
attacked before they are expected to move) 

• Autonomous kills (supplement to kills from planned sorties) 

• Attrition of strike aircraft  

• Attrition of sensor platforms 

• Daily cost to conduct the war (weapons expended, logistics, sensor attrition, and 
aircraft attrition) 

• Remaining strike sorties 

• Remaining sensor platforms 

• Remaining weapons 

• Phase results (results for target elements by processing phase) 

− Target elements sensed per day 

− Target elements downlinked per day 

− PED of target elements (target-element images exploited per day)  
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− Targets at risk (target elements per day that can be successfully found and 
attacked)  

3.2.4  E-CAPE 
• Spare time (the time available to attack targets after exploitation is complete) 

• Exposure (percentage of targets with positive spare time after PED) 

• Average exploitation delay in theater and out of theater 

• Throughput (percentage of collected imagery that is exploited) 

• Communications bandwidth required to pass imagery 

3.2.5  SIGINT (signals intelligence) Models 
MITRE staff have generally used CAPE models of SIGINT to develop measures of 

performance to use in other CAPE models that develop measures of effectiveness. The 
following measures of performance are representative of many others used in SIGINT 
models: 

• Percentage of all vehicles bringing drugs into a country that can be tracked with 
SIGINT 

• Percentage of a hypothetical new surface-to-air missile that can be located 

3.2.6  Tracking Models (single-sensor and multi-sensor intelligence fusion models) 
The following measures are usually found as functions of the number of sensors of 

various types, the number of elements per target tracked as a group (e.g., company or 
brigade), and sensor revisit times. 

• Proportion of targets located 

• Probability of maintaining birth-to-death track for a target through several move 
cycles 

• Proportion of targets currently seen and tracked correctly 

• Target location error (TLE), given that a target is tracked  

3.3  Inputs – the Actors and the Stage 
While the outputs of CAPE models are invariably expected values, the inputs take several 

different forms. The following sections describe illustrative inputs in terms of what they are 
(content) and how they are represented (form). The form of the input can be a simple index, a 
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constant, a table of constants, a probability, a table of probabilities, a probability density 
function, or an equation. 

3.3.1  Theater Environment Charactistics 
The theater environment in the CAPE models is typically described using the following 

factors: 

3.3.1.1  Country 
The scenario or location of interest is represented as an index (e.g., North Korea, Iraq, 

Iran) that will condition other input tables and constants. 

3.3.1.2  Range Bands 
Typically, the theater is divided into four range bands. The range bands represent strips 

of the country that are as wide as the theater and have various depths. Their depths are 
generally chosen to coincide with the range bands of the Deep Attack Weapons Mix Study 
(DAWMS), as follows: 

(1) 0-40 km 

(2) 40-150 km 

(3) 150-340 km 

(4) 340+ km 

The range bands are represented as an index, with the names above. 

3.3.1.3  Range-band Area 
The size of each range band, in square kilometers or square nautical miles, is represented 

as a table that is indexed by country and by range band. 

3.3.1.4  Weather 
Weather can affect the effectiveness of the sensors as well as the ISR sortie rates in some 

models. Typical weather conditions in CAPE models are 

(1) Clear 

(2) 50% cloudy 

(3) Full clouds 

(4) Light rain 

(5) Medium rain 
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(6) Heavy rain 

The weather is represented by an index and a table, as follows:  

• “Weather” is defined as an index, with the names given above; and 

• “Weather Proportion” is defined as a probability table, indexed by “Weather” and by 
country, giving the percentage of time each indexed country experiences each type of 
weather. 

3.3.1.5  Foliage 
Foliage can affect the effectiveness of sensors. Typical foliage categories in CAPE 

models are 

(1) Clear 

(2) Urban 

(3) Scrub 

(4) Forest 

The foliage in a particular country is described by the percentage of the area that is 
covered by the type of foliage. Foliage coverage is represented by an index (“Foliage”) and a 
table (“Foliage Proportion”) that is indexed by foliage and by country. 

3.3.1.6  Terrain Masking 
The terrain of a country may inhibit a sensor from accessing targets of interest. Terrain 

masking (delimitation) is modeled as the percentage of a country’s area that is not visible 
because of its terrain. Terrain masking is represented as a table of such percentages indexed 
by country. In addition to the country, the altitude of the collection platform can affect the 
amount of delimitation. Sensors on high altitude platforms are less likely to be affected by 
terrain considerations. In some models the amount of terrain masking is represented as a 
function of the platform altitude. 

3.3.2  Operational Environment Characteristics 
The following factors are used to describe the operational environment in a CAPE model. 
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3.3.2.1  Phase of War 
The phase of the war may be described in terms of (1) pre-SEAD7 and post-SEAD, or (2) 

phases 1, 2, 3, 4. Phase is represented as an index. The phases in the CAPE model are used in 
describing which assets are available at what point in the conflict. They also may be used to 
determine whether airborne platforms can over fly the theater or must standoff. 

3.3.2.2  Operations Tempo 
If troops are moving more frequently, then it is more difficult to monitor them. The 

frequency of troop movement affects both collection requirements (how often collection 
must be done) and the ability to collect, process, exploit and disseminate the image of a 
target before the target moves. Operations tempo is represented as a table of frequencies of 
troop movement indexed by rangeband and phase of war.  

3.3.2.3  IPB (Intelligence Preparation of the Battlefield) 
If good IPB can be accomplished, the locations of many targets will be available at the 

start of the conflict. IPB is modeled as the percentage of target locations that are known at 
the start of the conflict. IPB is represented as a table of percentages indexed by “Good IPB” 
and “Poor IPB.” 

3.3.3  Target Charactericstics 

3.3.3.1  Target Class 
Targets are modeled in terms of broad target classes. The target classes used in most of 

the CAPE models are those used in the DAWMS, which categorize approximately 200 
targets into seven classes:  

(1) Short intercept 

(2) Short mobile column (<10 vehicles) 

(3) Long mobile column (>10 vehicles) 

(4) Small long dwell target 

(5) Large long dwell target 

(6) Small fixed target 

(7) Large fixed target 
                                                 
7  SEAD stands for “suppression of enemy air defenses.” It denotes a supposed time in a scenario at which 

one has defeated an enemy’s air defenses. 
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3.3.3.2  Target Quantity 
The number of targets in a range band on any given day is represented deterministically 

as a table of quantities indexed by target class and range band. It is assumed that the targets 
are uniformly distributed throughout each range band. 

3.3.3.3  Target Area 
The target area (size) for a specific target in a target class is considered to be a random 

variable, since some targets in a class are larger than others. Further, the target area is 
represented as a continuous random variable for which our uncertainty may be described 
using a triangular probability density function. The three parameters of the triangular 
distribution are the minimum, mode, and maximum target size, which all vary by target class. 
Target area is represented by a table of such parameters indexed by target class. In 
calculations, the algebraic equations for a triangular distribution, involving the three 
parameters, also represent the target area. 

3.3.3.4  Target Pause 
The length of time a mobile or relocatable target stays in one location after it stops. 

Target pause is modeled as a continuous random variable with our uncertainty characterized 
by a triangular probability density function. It is represented as a table of min-max-mode 
parameters of the triangular distribution, indexed by target class. 

3.3.3.5  Move Time 
Move time is the length of time a mobile or relocatable target moves after leaving a 

location before it stops again. Move time is often modeled as a constant for each target class. 
It has been represented as a table of constants indexed by target class. It can also be modeled 
as a random variable and represented as a table of parameters of a probability density 
function, indexed by target class. 

3.3.3.6  CCD (Concealment, Cover, and Deception) 
CCD models the percentage of targets not seen due to the fact the red force sometimes 

employs a CCD measure. The percentage depends on the target class and whether the target 
is moving or stationary. CCD is represented as a table of percentages indexed by target class 
and target mode (fixed or mobile/relocatable). 

3.3.3.7  Elements Per Target 
Some targets contain more than one element (e.g., mobile column greater than 10 

vehicle). This is used when considering weapons allocation and when determining the 
resolution required for detection of the target. Elements per target is represented as a table of 
constants indexed by target class. 
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3.3.3.8  Target Value 
Some targets are more important than others are. When calculating the platform plan or 

the weapon-target-pairing algorithm, the value of a target can be used to select important 
targets for attack. The target value is modeled as a constant for each target class. It is 
represented as a table of constants indexed by target class. 

3.3.3.9  Signals Target Classes 
Signals target classes are represented as an index. Some signals target classes used as 

indices in CAPE models are as follows:  

(1) Leaders 

(2) Non-government organizations 

(3) Groups 

3.3.3.10  Emitter Class 
Each signals target uses signal-producing devices, which are called emitters, such as 

telephone, mobile phone, radar, and radio. Emitters are modeled in broad signal families, not 
as specific emitters. Emitters are represented by an “emitter class” index, whose members 
include such titles as 

(1) All UHF radios 

(2) Special UHF radios 

(3) Mobile telephones 

(4) Iridium telephone 

3.3.3.11  Emitter Quantity 
The quantity of emitters is represented as a table of quantities of emitters per signals 

target, indexed by emitter class and signals target class. 

3.3.3.12  Emitter Characteristics 
Emitters are modeled in terms of various electrical characteristics, such as power, shape 

of the power, waveform, and bandwidth. The emitter characteristics are represented in a table 
of characteristics indexed by emitter class. 

3.3.4  Collection Mix Characteristics 
The term “collection mix” is used to describe some combination of actual and/or 

proposed collection platforms whose performance is evaluated using a CAPE model. The 
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following variables are used to describe the platforms in a collection mix. Not all of the 
variables described below are used in all CAPE models. 

3.3.4.1  Platform Type 
The different types of collection platforms (e.g., U-2, Global Hawk, P-3) are represented 

as an index. The platform may be an aircraft or a satellite. With current CAPE models, the 
sensors on a platform are implicitly part of the platform type. For instance, a Global Hawk 
with a SIGINT package would be a different platform type than a Global Hawk with an 
IMINT package. 

3.3.4.2  Mix Quantities 
This is the quantity of each type of collection platform in the scenario of interest. The 

quantities may be varied by the analyst, but they are treated as constants for any particular 
run of the model. Mix quantity is represented as a table of platform quantities indexed by 
platform type and country (scenario). 

3.3.4.3  Deployment Rate 
The deployment rate indicates when and in what quantity a particular type of collection 

platform is available for use. The deployment rate may be specified in terms of pre-
SEAD/post-SEAD, phase of the war, or the day of conflict, depending upon the CAPE 
model. The deployment rate is a function of the “time phased force and deployment list” 
(TPFDL). Deployment rate is represented deterministically as a table indexed by platform 
type and time (e.g., day, phase). The table specifies either (1) the number of collection 
platforms arriving in each time period, or (2) the percentage of the total deployable number 
arriving in each time period. 

3.3.4.4  Platform Plan 
The platform plan is used to assign a platform(s) to collect in a particular range band. The 

platform plan may also be a function of pre-SEAD/post-SEAD, the phase of the war or the 
day of conflict. For each platform, it is the proportion of each range band that is to be 
covered by the platform. While set up to handle any proportion, in practice it is usually zero 
or 100 percent. Occasionally it is 50 percent. The platform plan is an input to the model. It 
does not necessarily represent the optimal allocation of the collection assets. The platform 
plan is represented as a table of proportions indexed by platform type and range band. 

3.3.4.5  Impact of Weather on Sensor Type 
Weather conditions may degrade the ability of sensors to collect usable imagery. 

Degradation is modeled as the probability that an image is not useful due to a weather 
condition. The effect of weather varies by sensor type, with electro-optical (visual) imagery 
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being most sensitive to the weather and SAR being the least sensitive. The impact of weather 
is represented as a table of degradation probabilities indexed by weather condition and by 
sensor type. 

3.3.4.6  Impact of Foliage on Sensor Type 
The type of foliage in a country may degrade the usefulness of a given sensor. This loss 

is modeled as the probability that a collected image is not useful because of foliage. The 
impact of foliage is represented as a table of degradation probabilities indexed by foliage 
type and by sensor type. 

3.3.4.7  Sortie Rate 
The number of potential sorties per sensor platform per day is modeled as a constant. 

Sortie rate is represented as a table of constants indexed by platform type. 

3.3.4.8  Impact of Weather on Sortie Rate 
Weather conditions may prevent an airborne sensor platform from being able to sortie. 

The probability that the mission cannot be performed is represented in a table indexed by 
weather condition and platform type. 

3.3.4.9  Correlation 
Several sensors in the mix may see and collect information on the same target. This 

phenomenon is accounted for by “correlation,” a percentage of sensed targets that are not 
duplicates. A correlation of 90 percent, for instance, would mean that ten percent of sensed 
targets are duplicates, and 90 percent of sensed targets are separate targets. Correlation is 
represented as a constant. 

3.3.4.10  Collection Platform Attrition Rate 
Due to mechanical failures or enemy air defenses, collection platforms may be lost. The 

attrition rate is used to account for the loss of platforms. It decreases the number of platforms 
as a function of time and sortie rate. It is a constant for each collection platform. It is 
represented as a table indexed by collection platform type. 

3.3.5  Collection Platform Characteristics 
The discussion of platform characteristics is divided into general characteristics and then 

characteristics specific to various types of sensors. For ease of presentation, the descriptions 
below say that the characteristics are represented by separate tables. However, the usual 
practice is to build one large table indexed by platform type and “platform characteristics.” 
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The one table contains all the “virtual” tables described below. In calculations, Analytica’s 
“slice” function is used to retrieve the data for each virtual table. 

3.3.5.1  General Platform Characteristics 

3.3.5.1.1  Duty Cycle 
The duty cycle is the reciprocal of the number of platforms required to maintain a 

twenty-four hour orbit. Duty cycle models the percentage of a platform’s service time in 
which the platform provides continuous coverage. The duty cycle considers flight endurance 
as well as maintenance and downtime. The equivalent number of twenty-four hour orbits is 
calculated by multiplying the number of platforms by the duty cycle. Duty cycle is 
represented by a table of duty cycles indexed by platform type. 

3.3.5.1.2  Altitude 
The altitude of a sensor platform influences (1) the distance its sensors can see into a 

country, (2) the effects of terrain masking, and (3) the survivability of the platform in regions 
where there are enemy air defenses. The altitude may or may not be directly used in a 
calculation, but if not, it may influence the analyst’s decision when defining the platform 
plan. The altitude is represented as a table of altitudes indexed by platform type. 

3.3.5.1.3  Range 
The distance an airborne platform can fly from its base/ground station influences the 

range bands in which it can be employed. The range is not necessarily represented in a CAPE 
model or used directly in a CAPE calculation, but it is used by the analyst when defining the 
platform plan. 

3.3.5.1.4  Required Stand-off Distance 
This is the distance that an airborne collection platform must standoff to avoid air 

defenses pre-SEAD. This factor is used to calculate which range bands the sensor can access 
and therefore what percentage of targets in the range band the sensor can image. It also 
affects terrain masking. The required standoff distance is represented as a table of distances 
indexed by platform type. 

3.3.5.2  For Imagery Collection 

3.3.5.2.1  Area Collection Rate 
An area collection rate is specified for each of a platform’s imagery sensors. It is the 

amount of area imagery the platform can collect per hour with the sensor. The area collection 
rate is represented as a table of rates indexed by sensor type and by platform type. 
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3.3.5.2.2  Point Collection Rate 
A point collection rate is specified for each of a platform’s imagery sensors. It is the 

number of point images the platform can collect per hour with the sensor. The point 
collection rate is represented as a table of rates indexed by sensor type and by platform type. 

3.3.5.2.3  Sensor Resolution 
The resolving power of a sensor is modeled as a single parameter, the sensor resolution, 

which is the smallest area that the sensor can discriminate. (Sensor altitude affects sensor 
resolution, so sensor resolution and platform altitude must not be varied jointly when 
sensitivity analysis is done.) CAPE analysts have used the same resolution for both point and 
area collection, though different resolutions could be used if the specific information were 
available. The sensor resolution is compared to the target area of a target class (a random 
variable) to determine the probability the sensor will detect/identify targets in the target class. 
Sensor resolution is represented as a table indexed by sensor type. It could also be indexed 
by target type if specific information were available. 

3.3.5.2.4  Area Imagery Proportion 
This is the percentage of time that a sensor collects imagery at the area rate instead of the 

point rate. The area imagery proportion may be represented as a constant across all platform 
types or as a table indexed by platform type. 

3.3.5.2.5  Collection Efficiency 
This is the percentage of time a collection platform is collecting imagery. It is always less 

than 100% because of turns, sensor mode transitions, and the geographical laydown of the 
collection requirements. It accounts for the lost collection time when the platform is moving 
between targets or moving the sensor. It is applied as a percentage that reduces the effective 
collection rate. The same collection efficiency is assumed for point collection as for area 
collection. It is the same for all platforms. It is represented as a constant. 

3.3.5.3  For Signals Collection 
The sensor and platform characteristics for signal collection are too sensitive to discuss in 

this report. Generally, they are related to the sensitivity of the sensor, the flexibility to direct 
the sensor to collect signals from emitters repeatedly, the capability of the sensor to listen to 
the full range of the emitter’s frequency range, and the capacity to transmit information to 
processing stations. 
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3.3.5.4  Other Collection 

3.3.5.4.1  Sensor Circular Error Probable (CEP) 
Sensor CEP is used as target location error (TLE) for fixed targets. TLE is used in the 

weapon-allocation process (see p. 42). For mobile targets, it is combined into a weighted 
average along with the accuracy of TLE cues from other intelligence sources (see below, 
section on Cueing). It is represented as a table indexed by sensor type and platform type. 

3.3.5.4.2  Downlink Capacity 
This is the communications capacity (“bandwidth”) between a sensor platform and a 

processing facility, represented as a table of constants indexed by platform type. 

3.3.5.4.3  Cueing 
• TLE cue – The target location error (TLE) of other intelligence sources that cue the 

sensor. It is modeled as a constant for each target class, and it is represented by a 
table of constants indexed by target class. 

• Other INT cue – The proportion of targets that have been cued from other intelligence 
sources. It is assumed to be independent of target class. It is represented as a constant.  

3.3.6  Imagery Exploitation Characteristics 
The process of imagery exploitation is represented with varying levels of fidelity within 

the CAPE models. It is usually modeled simply in terms of the time it takes to exploit an 
image after the image is collected. The time includes a waiting time, since there will usually 
be a backlog of images to exploit, plus the time to do the exploitation itself.  

The E-CAPE model, which focuses on the exploitation process, includes different 
exploitation sites and the use of automated exploitation aids.8 It also models the exploitation 
time as a function of workload. The formulas for the exploitation time (see p. 36) make use 
of the following factors: 

3.3.6.1  Imagery Arrival Rate 
The average hourly number of satisfactory images arriving for exploitation, which is 

represented in CAPE models as a dependent variable that is calculated from various inputs 
and other intermediate results. 

                                                 
8  The use of E-CAPE is documented in Parker, S. K., Modeling the Collection & Exploitation Trade-Off in 

the C4ISR Mission Assessment Study, MITRE Technical Report 98W0000042, May 1998. 
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3.3.6.2  Imagery Arrival Distribution 
The variation in the inter-arrival times of collected imagery. It is modeled by the 

coefficient of variation, which is the quotient of the standard deviation of the inter-arrival 
times and the average inter-arrival time. It is represented as a constant, though it may be 
varied by the analyst in sensitivity analysis. 

3.3.6.3  Number of Imagery Workstations 
The workstations are used to exploit the arriving satisfactory images. The number of 

workstations is represented as a constant. (By specifying the number of workstations instead 
of the number of analysts, the implicit modeling assumption is that the workstations are 
always staffed.) 

3.3.6.4  Exploitation Rate 
The average number of satisfactory images exploited per hour per workstation 

represented as a constant. 

3.3.6.5  Exploitation Distribution 
The variation in the time required to exploit an image is modeled by the coefficient of 

variation, which is the quotient of the standard deviation of the service time and the average 
service time. It is represented as a constant. 

3.3.7  Weapon Characteristics 

3.3.7.1  Engagement Time Requirements 
The minimum time from the tasking of an aircraft or missile until the weapon engages 

the target, represented as a table of time requirements indexed by platform type and range 
band. 

3.3.7.2  Weapon TLE (Target Location Error) Requirements 
The accuracy with which the target’s location must be known in order to use a weapon 

effectively. TLE for a target is compared to the weapon TLE requirement when allocating 
weapons. Weapon TLE requirements are represented by a table of TLEs indexed by weapon. 

3.3.7.3  Inventory 
The number of weapons in the inventory at the start of the scenario, represented as a table 

indexed by type of weapon. 
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3.3.8  Strike Platform Characteristics 

3.3.8.1  Potential Sortie Rate 
This is the number of aircraft that can be launched per day. The initial value of the 

potential sortie rate is represented in a table indexed by platform type. In a dynamic model, 
the initial value changes with aircraft attrition and with the deployment of new platforms. 
Another variable, the “assigned sortie rate,” counts the actual strike sorties, differentiated by 
platform type. 

3.3.8.2  Strike Platform Attrition Rate 
The probability that a strike platform is lost when it is sent on a mission (sortie), 

represented as a table indexed by platform type, range band, and phase of the conflict. 

3.3.8.3  Expected Kills Per Sortie (EKS) 
An aircraft may carry several weapons (i.e., munitions) and use them to attack several 

targets. The “expected kills per sortie” is the expected number of targets destroyed per sortie. 
It is represented as a table of EKS constants indexed by strike platform type, munition, and 
target type. 
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Section 4 

Modeling Operational Processes with CAPE 

Several techniques for modeling operational processes are used so repeatedly in CAPE 
analyses that they may be said to be characteristic of CAPE models. Most of the techniques 
help implement the second principle of the CAPE methodology, doing probabilistic 
calculations analytically and simply. This section describes the techniques in the context of 
the operational processes they have supported. However, the techniques are not limited to the 
specific processes identified here. They are general modeling techniques that support the 
three CAPE principles of modeling (see p. 8). 

4.1  Determining the Efficiency of Collection Processes 

4.1.1  Overview of Imagery Collection 
CAPE modelers have approached the imagery-collection process in four basic steps. The 

four steps and the basic input parameters used in each step are as follows: 

1. For each specific platform/sensor combination, determine the proportion of targets 
that will be masked from collection. Use these input parameters: 

• Weather, terrain, and foliage theater-environment characteristics 

• CCD (concealment, cover, and deception) target characteristic 

2. For each platform/sensor combination, determine the effective collection rate (images 
per hour of operation). Use these input parameters: 

• Area and point collection rates 

• Area imagery-proportion 

• Collection efficiency 

3. For each range band, determine the number of targets (by target type) that could 
theoretically be observed for each sensor/platform combination, given a plan for the 
allocation of sensors to the range band. Use these input parameters: 

• Platform plan 

• Correlation 

• Collection rate 

• Range band area 
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• Sortie rate 

• Stand-off distance, range band depth, sensor range 

• Note: If the sensor is standing off, and the sensor range can only reach half-way into 
the range band, then it will have access to at most half of the targets, just due to the 
effects of standoff. You then must also consider the area to be covered and the 
collection rate. 

4. For each platform/sensor combination in each range band, determine the expected 
number of targets (by target type) accurately identified and located. Use these input 
parameters: 

• Target resolution by target class 

• Impact of weather on sortie rate 

• Fraction of targets pausing (calculated from move and pause time) 

4.1.2  Overview of Signals Intelligence Collection 
Because of information sensitivity, all that can be said about modeling the SIGINT 

collection process is that it follows these general steps: 

1. For a given emitter, determine the probability that it is detectable, in terms of signal-
to-noise ratio. 

2. If detectable, determine the probability that an antenna can be aimed at the emitter 
frequently enough to collect signals. 

3. If detectable and collectable, determine the probability that the sensor’s radio 
receivers are tunable through the full range of the emitter’s spectrum. 

4. If detectable, collectable, and tunable, determine the probability that the information 
from the sensor’s receiver can be transmitted to the processing station. 

4.1.3  Modeling the Masking Due to Weather, Foliage, and Terrain 
CAPE models use many tables of conditional probabilities to calculate intermediate or 

final results (outputs) as unconditional probabilities or expectations. Such tables and 
calculations are the staples of CAPE models, being the major part of every CAPE analysis. 
An important case is modeling how the detection of a target by a sensor depends on the 
weather, the foliage, and the terrain.  

The detection issue can be posed as a question to answer, “What is the probability the 
target can be seen by the sensor, considering that the target may be masked by weather, 
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foliage, or terrain?” To get at this question, CAPE modelers typically assume that the 
masking effects of weather, foliage, and terrain are independent of one another, in this sense:  

• The effects of weather do not depend on the foliage or terrain;  

• The effects of foliage do not depend on the weather or the terrain; and 

• The effects of terrain masking do not depend on the weather or the foliage.  

Such assumptions allow one to treat weather, foliage, and terrain as if they were three 
separate and independent masking factors that might obscure the target from the sensor.  

Given the assumptions, one sets up a method to calculate an unconditional probability of 
“non-masking” for each of the three factors, multiplies the resulting three unconditional 
probabilities together, and calls the result the probability that the target will not be masked, 
considering all the possibilities of weather, foliage and terrain. The probability the target can 
be seen despite weather, foliage, and terrain is just this calculated probability of “non-
masking.” 

To develop one of the three unconditional probabilities, that for weather, one would 
proceed as follows:  

• Create a table of conditional probabilities of non-masking, specifying the probability 
of non-masking for each type of weather.  

• Set up another table of unconditional weather probabilities, specifying one 
probability for each type of weather.  

• Calculate the unconditional probability of non-masking by multiplying the weather-
conditioned probabilities of non-masking with the unconditional probabilities of 
weather and adding up the products.  

 

Here are examples of the two tables of probabilities and of the corresponding calculation 
of the probability of non-masking for the weather factor: 

Weather 
Condition 

Probability 
of Masking 

Probability 
of Non-Masking 

Clear Weather 0 1 

Cloudy Weather 0.5 0.5 

Rainy Weather 0.9 0.1 
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Weather Event Probability 
of Event 

Clear Weather 0.5 

Cloudy Weather 0.25 

Rainy Weather 0.25 

 

Pr( ) . . . . . . .Non Masking by Weather− = × + × + × =0 5 10 0 25 0 5 0 25 01 0 65 

Suppose the probabilities of non-masking for foliage and terrain are calculated (by 
similar combinations of conditional and unconditional probabilities) to be 0.70 and 0.75, 
respectively. Then the unconditional probability that the target will not be masked by any of 
the three factors (weather, foliage, or terrain) is the product of the non-masking probabilities 
for the factors: 

Pr( ) . . . .Non Masking− = × × =0 65 0 70 0 75 0 34  

Looking at it the other way, in terms of masking, the probability that the target is masked 
by at least one of the three factors is the complement of this probability: 

Pr( ) . . .Masking = − =10 0 34 0 66  

The foregoing illustration shows the typical CAPE use of conditional probabilities to 
calculate unconditional probabilities. A related CAPE technique uses tables of expectations 
(for instance, the expected number of targets in a range band) to calculate other expectations. 
For instance, one might calculate a probability of 0.34 (as above) that a target is not masked 
by weather, foliage, or terrain and then find in a table that the expected number of such 
targets in a specific range band is 100. These two numbers would be multiplied to find the 
expected number of non-masked targets in the range band, which is 34. 

4.1.4  Accounting for Target Size – Using Thresholds for Target Resolution 
Targets may be too small to reliably collect. So even though weather, foliage, and terrain 

masking factors are absent, one may not be able to use a sensor to detect or identify a target. 
This phenomenon is typically modeled in the CAPE methodology by identifying a threshold 
resolution for the sensor, in the same dimension as target size (e.g., the dimensions of a 
vehicle, or the power of a radio transmitter), and then comparing the threshold to the size of 
any particular target. If the target is larger than the threshold, then one assumes that the 
sensor data can be used to detect or identify the target. (In general, there would be different 
threshold resolutions for detecting, classifying, and identifying targets.)  

Because the CAPE methodology models targets in the aggregate, with target classes 
instead of with individual targets, the threshold must be applied with all the sizes of targets in 
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the class to determine the probability that a randomly selected target from the class will be 
detected. In order to make such a determination, one typically specifies a probability density 
function (PDF) for the size of targets in a target class. Then one uses the PDF to compute the 
probability that a target from the class will be detected. This is the probability that a target 
from the class is larger than the threshold resolution of the sensor.9 

For imagery, the threshold resolution and target size are specified in terms of “target 
length.” Target length is considered to be a continuous random variable, and uncertainty in 
target length is modeled by a PDF, typically a triangular distribution.  

The triangular PDF for target length has three parameters:  

• Min (no targets have a smaller size than Min),  

• Mode (the most likely size), and  

• Max (no targets are larger than Max).  

All targets are detectable if the sensor’s resolution threshold is smaller than Min. No 
targets are detectable if the threshold is larger than Max. Some targets are detectable if the 
threshold is between Min and Max.  

Let s stand for the threshold resolution for a sensor. Then when a triangular PDF is used 
to model uncertainty in target length, the formulas for the probability that a target is 
detectable are as follows:  

1. When the threshold s is less than Min or greater than Max, 

( )Pr Target is detectable = 0  

2. When s is less than or equal to Mode, but greater than Min, 

( ) ( ) ( )( ( ))MinMaxMinModeMinsdetectable is Target −−−−= 21Pr  

3. When s is greater than or equal to Mode, but less than Max, 

( ) ( ) ( )( ( ))MinMaxModeMaxsMaxdetectable is Target −−−= 2Pr  

A simpler representation of target length would be a uniform PDF, where all sizes fall 
between a Min and a Max, and there is no most likely size – all sizes are equally likely. In 
this case, the probability that the target is detectable is even easier to calculate: 

                                                 
9  Mathematically, if G(x) is the cumulative distribution function for X, the size of the target, and if s is the 

sensor’s threshold for detecting targets, then the probability of detecting the target is taken to be  
Pr(Detect) = 1 – G(s). 



 
 

36 
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Finally, the size may be expressed in units of time. For instance, if a target must move for 
at least five minutes to be detected and located for targeting, then the move-time becomes the 
“size.” The move-time distribution might be either triangular or uniform, and treated as 
above. It might also be modeled with an exponential distribution over times ranging from 
zero to infinity. If so, and if μ is the average move-time, then the probability that the move-
time Tm is greater than a threshold s is calculated as 

μsesTm
−=> )Pr(  

4.2  Modeling the Delay in Sensor-to-Shooter Response 

4.2.1  Background 
After taking a reconnaissance photograph, it takes some time before the film can be 

processed. It then takes additional time to get the film to someone to analyze. It takes more 
time to analyze (exploit) the photograph to determine what information it contains. Finally, it 
takes time to interpret that information, decide what it means (in the context of other 
information), and act upon it. Thus it may take hours or days between the taking of a 
photograph and the launch of a strike sortie against targets shown in the photograph. The 
target may move in the meantime. 

Many improvements in C4ISR systems are aimed at shortening the time between sensing 
the target and striking the target. Therefore, to analyze such improvements, CAPE modelers 
need a method for modeling the delay between sensing and shooting. To satisfy this need, 
they have generally modeled the delay with (1) a probabilistic queue for the sense-to-
decision time, and (2) a deterministic fly-out time for the strike once it is launched.  

A queue is a waiting line consisting of people or items awaiting service. Arrivals occur 
when more people or items come for service. Those who arrive usually have to wait in the 
queue for others to be served before they are served. The time they have to wait depends on 
how many others are in line ahead of them and on how fast the others will be served.  

4.2.2  Calculating the Delay 
CAPE modelers generally work at such a high level of aggregation that they can estimate 

only the arrival rate of work into a service center and the service rate of the center. They may 
also estimate the variances of the rates. They will generally not know how work is divided or 
processed within the service center. In particular, they will not know how many servers are 
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working simultaneously. With this information, they model the service center and queue as a 
single-server system, not because they know it is a single server system, but because they do 
not know enough to say how many servers there might be. The result is that their calculations 
of delay through the system will tend to systematically underestimate the delay that would be 
calculated for more servers. However, so long as the system is well utilized (near capacity), 
the error may not be great.10 In CAPE models, the systems used for analyzing imagery and 
for planning strikes do tend to be working at or near capacity. That is because skilled 
intelligence analysts during wartime are scarce in comparison to the volume of information 
they are asked to analyze. 

The CAPE model for delay is a first-in, first-out (FIFO) queue with general inter-arrival 
times, general services times, and a single-server (G/G/1). Henry Neimeier identifies the 
model as an approximate solution to the general inter-arrival and general service time 
queue.11 With this model, the formula for the average delay at a node (service center with a 
single server) is written as follows: 

( )
( )

Average Delay =
× +

× −

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ +

⎡
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⎢

⎤

⎦

⎥
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r

2 2

2 1
1 1  

Where 

• U is the process utilization (see formula below) 

• Ca is the coefficient of variation of the inter-arrival times12 

• Cs is the coefficient of variation in service times 

• Sr is the average service rate, i.e., the average number of services performed per unit 
of time 

                                                 
10  For two systems with equal average service times and arrival rates, but different numbers of servers, the 

system with the most servers will have the longest service time per server. Hence it will have the longest 
total delay (waiting time plus service time). The difference in total delay is magnified when the utilization 
is low, causing service time to be the main component of total delay. 

11  See Neimeier, H. A., “Analytic Network Queuing,” International Systems Dynamics Conference 
Proceedings, Stirling, Scotland, 1994. 

12  A random variable’s coefficient of variation is its standard deviation divided by its mean. Its standard 
deviation is the square root of its variance. 
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The process utilization (U) of the system is 

U = =
Average arrival rate
Average service rate

Average arrival rate
Sr

 

For the case where the inter-arrival times and service times can be modeled with an 
exponential probability distribution, which is a typical assumption for modeling queues, the 
coefficients of variation both equal 1.0, so the formula for average delay is simplified, as 
follows: 

AverageDelay =
−
1

Average service rate Average arrival rate
 

4.2.3  Correcting for Actual Delays 
In general, the formulas for delay will underestimate the delay if the system has more 

than one server (see footnote 10). A way of correcting for this underestimate, if more 
information is available, would be to take information about the actual delay associated with 
a given arrival rate and service rate, compare it to the delay calculated with the formula, and 
develop a correction factor (actual/formula) to be applied to formula calculations. Such 
correction would adjust the rates to fit the delay. So long as the correction is relatively small 
compared to the formula’s calculation, the estimate may be acceptable. In general, it is 
difficult to predict the corrections needed for different rates without a detailed underlying 
model. 

4.2.4  Calculating the Throughput 
If the utilization of the system is less than one, then the throughput (percentage of 

arriving work that receives service) of the system is 100 percent. However, if the utilization 
is greater than one, the throughput is the reciprocal of the utilization, and the average delay 
formula presented above is not applicable. This situation has been (or can be) handled three 
different ways in CAPE models: 

1. Set 95 percent as the highest allowable utilization. In cases where the utilization 
would be greater than 95 percent, assume that the excess over 95 percent is discarded 
or diverted to another service system. In this case, the highest possible delay for work 
performed at the service center is the delay associated with the 95 percent utilization. 
This case is equivalent to setting a maximum length to the queue awaiting work at the 
service center and rejecting work that would extend the “line” awaiting work beyond 
the maximum. 

2. Set a constraint on delay. If there is more work, potentially causing a longer delay 
than the constraint, either discard the work or divert it to another service system. This 
approach is also equivalent to setting a maximum length to the queue. 
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3. Keep a backlog. Using either of the approaches above, do not discard the excess 
work, but store it for later service if the arrival rate should decrease. 

4.3  Movement of the Target Beyond Strike Range 
For many sensor-to-shooter (STS) systems, significant delay occurs between sensing a 

mobile ground target and engaging it with a weapon system. One major purpose of new 
investment in STS systems is to shorten the delay, so that the mobile target is more likely to 
be found and engaged successfully. 

A model of target movement is at the heart of many CAPE analyses of STS systems, 
representing mobile ground targets in their race against the imagery-based STS system. 
Target movement involves the interaction of complex probabilistic phenomena.  

To enable CAPE analysis of investments in STS systems, a probabilistic model of target 
movement has been derived from reasonable probabilistic assumptions using basic 
probability calculus. The derived model includes related probability distributions (cumulative 
distribution functions) for  

• The length of the pause that remains after a mobile target is observed pausing;  

• The distance the target may have moved at any specific time after it is observed; and  

• The distance the target may have moved when a strike sortie arrives to attack it, 
where the time of arrival is itself a random variable.  

These probability distributions are calculated from more basic probabilistic models of 
target movement time, pause time, and velocity, as well as from the revisit time used for 
managing surveillance and reconnaissance of targets. The distributions are used to calculate 
the probability that a target observed pausing will be within engagement range when a sortie, 
launched on the basis of the observation, arrives to attack the target. This involves a model of 
the sensor-to-shooter response time. 

Appendix B contains details of the derived probability distributions. The derivations have 
been implemented in software to make them available for incorporation in analyses. They 
exist as Visual Basic code and as Analytica models. 

4.4  Strike Engagement – Catching the Target Before it Moves Too Far 
In accounting for target size and using thresholds for target resolution (above, p. 34), a 

threshold is compared to a random variable. For instance, a sensor’s threshold resolution of 
10 meters is compared to target size, a random variable that might vary between one and 50 
meters. The basic analytical question associated with thresholds is “What is the probability 
that the random variable is larger than the threshold?” 
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In more complex comparisons, the basic question remains the same, but two random 
variables are compared to each other instead of one random variable being compared to a 
threshold. Specifically, to model the success of a strike mission with the CAPE methodology, 
two random variables are compared: 

• Tm, the time from the moment a sensor collects data about a target until the target 
moves a safe distance away and can no longer be found by a strike mission that is 
sent to attack it; and 

• Ts, the time from the moment a sensor collects data about a target until a strike 
mission arrives to engage the target. 

If Tm is greater than Ts, then the target can be successfully attacked. If Tm is smaller than 
Ts, the target cannot be successfully attacked. As with the threshold method, the basic 
analytical question associated with such comparisons is “What is the probability that Tm is 
greater than Ts?” One may also ask, “If Tm is greater than Ts, how much greater is it?” 

To answer the analytical questions, three approaches may be taken. The first is based on 
the target-movement model reported in Appendix B. The second is based on the Fractile 
Method (described below, p.49). The third is a heuristic method based on the threshold 
approach for target resolution (described above, p.34). 

4.4.1 Applying the Target-Movement Model 
Appendix B presents an overview of equations that represent target movement in 

connection with the strike mission. The last section of the Appendix presents two approaches 
for calculating the answer to the analytical questions stated in this section. The first approach 
depends upon the specification of a cumulative distribution function (CDF) for the time Ts. A 
double numerical integration is performed using this CDF. The second approach depends 
upon the specification of a mean and variance for Ts. The mean and variance are then used in 
a single numerical integration to approximate an answer to the analytical question. 

4.4.2  Applying the Fractile Method 
If one has probability distributions or data sets for Tm (perhaps from Appendix B) and for 

Ts, the answers to the analytical questions may be approximated to any degree of precision 
by using the Fractile Method. The Fractile Method is a special technique of CAPE analysis 
(see p. 49). It is applied as follows to answer the analytical questions: 

1. To find the probability that Tm is greater than Ts, first approximate the continuous 
random variables Tm and Ts by generating discrete random variables Tm’ and Ts’ (each with N 
values). Then find the number M of combinations of Tm’ and Ts’ in which Tm’ is greater than 
or equal to Ts’. Finally, divide M by the total number of combinations, N 2. The quotient 
M÷N 2 is the probability that Tm is greater than Ts. 
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2. To find the cumulative distribution function for Z = Tm – Ts for the case when Tm is 
greater than Ts, first generate the variables Tm’ and Ts’ as defined above. Then find the 
differences Z’ = Tm’ – Ts’ for all combinations of Tm’ and Ts’. Finally, discard all negative 
values of Z’. The remaining values of Z’ are equally probable. Collectively they approximate 
the random variable Z when Z is known to be non-negative. 

4.4.3  Applying Threshold Heuristics 
CAPE modelers have used a heuristic approach based on threshold comparisons to model 

the success of strike missions. The logic of the heuristic approach is as follows:  

• Because the target’s pause may be just ending or just beginning when the sensor finds 
the target, one expects the distribution function for Tm to extend from zero to several 
hours. Thus the standard deviation of Tm could be fairly large. 

• For Ts, the complex process of imagery exploitation, target analysis, and initiation of 
attack sorties is a sequence of tasks performed in serial order. Hence one expects 
there to be a basic minimum time to accomplish all the tasks – the sum of the 
minimum times it takes to perform each separate task. In an efficient system, one 
might expect the standard deviation of the total time Ts to be small to moderate as 
compared to the basic minimum time. 

• If the standard deviation of Ts is small relative to its minimum, and if the standard 
deviation of Tm is large compared to the minimum of Ts, then it is (heuristically) 
reasonable to approximate the random variable Ts by a single value, Ts’, and then 
compare Ts’ to Tm through use of a distribution function for Tm. CAPE modelers have 
used the expected value of Ts as the representative value Ts’. They have typically used 
a triangular distribution function for Tm.  

Following this logic, approximate answers to the analytical questions are developed as 
follows: 

1. Find the expected value of Ts, and call it μS. 

2. Define a cumulative distribution function (e.g., triangular) for Tm, and call it G(tm). 

3. Calculate the probability that Tm is greater than Ts: 

(a) Use the threshold method (see p. 34) to calculate the probability that Tm is larger 
than the expected value of Ts, μS. That is, calculate the probability  
Pr(Tm > μS) = 1 – G(μS). 

(b) Take the probability just calculated, and call it the probability that Tm is larger 
than Ts. That is, assign the probability  
Prob(Tm > Ts) = Prob(Tm > μS) = 1 – G(μS).  
Such an assignment does not follow from the axioms of probability calculus, but 
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it may, in conditions known to the analyst, be a good assignment as an 
approximation. 

4. Calculate the cumulative distribution function for Z = Tm – Ts for the case where Tm is 
greater than Ts: 

(a) Use G(tm) and the expected value μS to compute a conditional distribution 
function for the size of Tm when it is bigger than μS. That is, calculate the 
conditional distribution   
G’(tm | Tm > μS ) = G(tm)/(1 – G(μS)). 

(b) Define Z = Tm – μS. Thus Z represents the amount of time remaining after 
launching a sortie to attack the target until the target moves. The distribution 
function for Z, a positive number by definition, is  
G’(z | Tm > μS) = G(z + μS)/(1 – G(μS)). 

(c) Take the distribution just calculated and call it H(z | Tm > Ts), the conditional 
distribution for Z when Tm is greater than Ts. That is, 
H(z | Tm > Ts) = G’(z | Tm > μS) = G(z + μS)/(1 – G(μS)) 
Such an assignment does not follow from the axioms of probability calculus, but 
it may, in conditions known to the analyst, be a good assignment as an 
approximation. 

It is up to the analyst to assess the quality of the threshold heuristics in specific 
applications. They are not necessarily close approximations. The smaller the standard 
deviation of Ts, and the larger the standard deviation of Tm, the better the approximation. 

4.5  Weapon-Target Pairing 

4.5.1  Introduction 
Targets are located by surveillance and reconnaissance and then attacked with weapons. 

Improvements in surveillance and reconnaissance can pay off with increases in the number 
of targets attacked and eliminated. To model this relationship between operational 
intelligence and operational results, one must account for the assignment of strike sorties to 
targets. In military operations, such assignment results from a complex process of target 
analysis. A CAPE model must represent the function of target analysis in order to link 
surveillance and reconnaissance to the operational results. 

In Dynamic CAPE the strike sortie is the basis of target analysis. Target analysis is 
modeled in terms of the sorties that could be launched in a given time period. The model 
consists of the following procedure, called the weapon-target-pairing algorithm:  

• Rank all the kinds of individual strike sorties that could be flown in terms of their 
desirability;  
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• Starting at the top of the list, fly as many of the first type of sortie as possible, 
considering the numbers of targets left to strike, weapons left to allocate, and 
platforms available to fly; and   

• Continue down the list, flying as many sorties of each type as possible, considering 
all the same factors. 

While this procedure allocates all sorties for the time period at once, as if for a daily air 
tasking order, it is meant to approximate the allocations that would be made when sorties are 
allocated continuously throughout a time period.  

The weapon-target-pairing algorithm is highly aggregate, not modeling any specific sub-
functions of target analysis. It is heuristic, not based on any mathematical programming 
technique or on any target analysis technique. It is intuitively appealing because it is logical 
and seems analogous to the way target analysis should take account of many factors.  

The weapon-target pairing algorithm has three broad steps, explained below: (1) 
Calculate pairing values; (2) Rank sorties by pairing value; and (3) Select sorties. 

4.5.2  Calculate Pairing Values 
Use a pairing value formula to calculate a value for each possible strike sortie that may 

be flown, considering all possible combinations of platform types, munitions, target types, 
and range bands. Various pairing formulas have been used. The basic formula is as follows: 

COMCV PPEKSTValue Pairing ×××=  

Where the parameters are 

• Target value, TV (optional)13 

• Expected kills per sortie (EKS), from a table of EKS indexed by platform type, 
munition, and target type. 

• PC, the probability that the sortie can reach the target’s observed location before the 
target moves out of the strike system’s engagement range. Call PC the probability of 
capture, with the connotation that the strike sortie’s target acquisition system can find 
the target. Capture does not guarantee a successful attack, but it is a necessary 
precondition for success. The probability is calculated for three different cases:  

                                                 
13  Seemingly the most important factor, it has been difficult to develop consensus on the relative values of the 

various target types. In analyses with Dynamic CAPE, all target types in all range bands were treated as 
equal in value because consensus could not be achieved. 
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(a) For mobile targets that are located when they are stationary, and are not known to 
have moved, PC is calculated from various parameters of the target movement 
model (see Appendix B) and from a model of the sense-to-respond time for the 
total sensor-to-shooter system. The probability varies by sensor platform type, 
target type, range band, strike platform, and strike weapon.  

(b) For mobile targets that are located when they are moving, PC is taken to be 1.0, 
under the assumption that the target is being continuously tracked. 

(c) For non-mobile targets, PC is taken to be 1.0, under the assumption that the 
geolocation error of the sensor system is nil as compared to the requirements of 
the weapon system. That is, if the sensor produces an adequate image to identify 
the target, it will have a small geolocation error. 

• PCOM, communications throughput, the probability that the exploited information for 
a collected target is provided to target analysts. In practice, the same probability has 
been assigned for all target classes and range bands in the same theater. It has differed 
only with theater. It would affect the allocation of strike sorties across theaters. 

The pairing-value formula may be interpreted as follows: The pairing value is a “benefit” 
received for launching one sortie. The benefit comes from “killing” the number EKS of 
targets that have value TV. The benefit is “discounted” by the factors PC and PCOM. 

4.5.3  Rank Sorties by Pairing Value 
Sort, in decreasing order of the pairing value, all the possible sorties made up of 

combinations of platform type, weapon type, target type, and range band. 

4.5.4  Select Sorties 
Beginning with the sortie at the top of the list, and continuing down the list until as many 

platforms, weapons, or targets are allocated as possible (without duplication), do these steps: 

1. Determine the number of sorties to fly: 

(a) Determine the theoretical number of sorties it would take to eliminate all the N 
targets requiring service during the time period, given one could eliminate EKS 
targets certainly with each sortie. (If, for example, the EKS is 0.67, then it 
theoretically takes (1÷EKS) or 1.5 sorties to eliminate one target.) The number of 
sorties it would take to eliminate N targets is N ÷EKS. (In the CAPE 
methodology, N is calculated as an expected value elsewhere in the model, and 
then it is used to calculate N ÷EKS.) 

(b) Determine the number of sorties that could be flown with the number of weapons 
available to be allocated. This number is just the total number of weapons 
available divided by the “loadout” (number of weapons per sortie). 



 
 

45 

(c) Determine the number of sorties that could be flown with the number of strike 
platforms available, using the potential sorties that could be flown per day (“sortie 
rate,” p. 24). 

(d) The number of sorties to fly is the minimum of the numbers calculated in (a), (b), 
and (c) above, rounded down to the nearest whole number. 

2. Subtract the numbers of weapons and platforms allocated to the number of sorties just 
chosen above from the numbers available for allocation to targets. 

3. Subtract the number of targets attacked by the sorties from the total of targets 
requiring service. 

4. Pick the next sortie on the sorted list, and return to Step 1. 

4.6  Calculating Dynamic Results – Setting Up Time-Step Simulations 

4.6.1  The Basic Approach for CAPE Simulations 
Following CAPE Principle 3 (p. 10), all simulations with CAPE are deterministic and 

time-step. That is, no random-number generation is done, no statistics of such random 
numbers are calculated, and the output state descriptions of one time period are used as 
inputs to compute the output state descriptions of the next time period.  

In practice, many CAPE inputs are probabilistic, and therefore the output state 
descriptions for any given time period are necessarily probabilistic, not deterministic. 
Nevertheless, in the CAPE approach to simulation (e.g., as exemplified in Dynamic CAPE), 
one uses the expected values of the probabilistic outputs from one time period as if they were 
the deterministic inputs for the next time period. This is a heuristic approximation, and its 
validity needs to be assessed by the analyst for each specific model. Its results are indicative 
of patterns that might be seen over time, but the results are not definitive for those patterns. It 
is the best that can be done without increasing the computations many fold by using random 
number generation and statistical methods. 

4.6.2  A Method for Verifying CAPE Simulations 
Though it has not been done yet, one could use a probabilistic approach to test the 

accuracy of Principle 3’s heuristic approximations. The objective of such testing would be to 
confirm, for a limited set of scenarios, that the expected values calculated with Principle 3’s 
heuristic approximation are comparable to those that would be found through probabilistic 
methods. The calculations internal to each time period would be the same, but the outputs of 
the time periods would be randomly generated samples instead of expected values. These 
random samples would feed the next time period as inputs. The only difference in calculation 
would be in generating the random samples instead of the expected values. 
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Consider the calculations in the Dynamic CAPE model. The time-varying input variables 
for simulation are numbers of targets (by target class and range band), numbers of strike 
platforms available to be flown (by platform type), and numbers of weapons available for 
sorties (by weapon type). In each time period, these numbers change to model the effects of 
attacking the targets with the platforms and weapons. They also change to model the 
deployment of new resources and to model the doctrine followed in different phases of the 
war. Figure 1-1 illustrates the changes (Δ’s) for the first three time periods. The changes for a 
time period are a function of the targets, weapons, and platforms available at the start of the 
period. The same CAPE model is used to calculate the changes in the different time periods. 
It produces different outputs for the periods because it has different inputs for each period. 

Figure 1-1.  Time-Step Simulation 
The original numbers of targets, weapons, and platforms are successively 

reduced or increased in the time periods. The model for each time period is 
the same, but the inputs differ and so the outputs differ, too. 

4.6.3  Generating Random Samples to Verify CAPE Simulations 
Currently, the Dynamic CAPE analysis generates probabilities at each time period that 

various targets will be destroyed and that strike aircraft will be lost in combat. It uses these 
probabilities to calculate the expected numbers of targets destroyed and aircraft lost. If one 
attacks N targets of a specific type in a range band, and if the probability of destroying one 
such target is P, then the expected number of targets destroyed is P × N.14  

A statistical approach for verifying the Dynamic CAPE calculations would use the same 
probabilities (P)at each time period to generate random samples instead of to calculate 
                                                 
14  P must be derived from the number of targets attacked, the number of weapons used in the attack, and the 

probability of destroying the target with a single weapon. The factors described in the section on weapon 
target pairing would be involved: EKS, PC, and PCOM. 
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expected values for the numbers of targets destroyed and aircraft lost. The random variables 
would be the inputs for the next time period. They would substitute for the expected numbers 
used as inputs in the CAPE heuristic approximation. 

For instance, one may generate a random sample M of the number of targets destroyed 
when N targets are attacked and when the probability of destroying a single target is P. One 
generates this random sample as follows: First generate N independent uniform random 
variates,15 and then count how many of them are less than or equal to P. The count is the 
sample that was to be generated, M.  

In each place where CAPE’s heuristic simulation calculates P × N to get the expected 
number of targets destroyed, one generates the random sample M instead. This requires more 
calculation than merely multiplying P × N to get the expected number. However, it is not an 
impossible amount of calculation.16  

4.7  Special Techniques – Calculation of Probability Distributions 

4.7.1  Introduction 
The purpose of CAPE modeling is to support exploratory studies of future C4ISR 

systems. For such use, the typical probabilistic information available to modelers is notional, 
intuitive, or based on professional judgment. In some cases, however, CAPE modelers have 
access to high quality statistical information that they wish to use in their models. The 
information may be in the form of historical data or of statistics (the mean and variance) for 
historical data. This section of the paper describes how CAPE modelers incorporate such 
probabilistic information. 

4.7.1.1  Functions of Random Variables 
When high quality statistical information is available, it can be used to improve the 

validity of CAPE models. This is done primarily by more careful calculation of the results 
when two or more random variables interact to create another (dependent) random variable. 

                                                 
15  A standard uniform random variate is a real number selected from the closed interval (0 to 1.0). It is a 

uniform random variable because the probability that a random sample is within any arbitrary sub-interval 
of (0 to 1.0) is equal to the size of the sub-interval. For example, the probability that the variable turns out 
to fall in the sub-interval (0.2 to 0.5) is 0.3. 

16  Assuming that it takes one multiplication and one addition to generate a random sample, and assuming that 
multiplication takes much more time than the addition, one could argue that it takes N multiplications to 
calculate M and only one multiplication to calculate P × N. So the increase in calculation to generate a 
random sample instead of an expected value is proportional to N. 
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In such cases, one is using higher quality information to calculate better information about a 
function of random variables. 

4.7.1.2  Pairwise Decomposition of Functions 
When more than two random variables combine in a complex function to form another 

random variable, a basic strategy for developing probabilistic information about the function 
is to decompose the function into sub-functions that combine two random variables at a time. 
Then one develops the probabilistic information for the full function by successively 
combining information about only two random variables at a time. For instance, the function  
Z = ((X - Y)/S) + T  can be decomposed so that information is developed in the following 
sequence, developing probabilistic information first about Z1, then Z2, and finally Z itself: 

Z1 = X – Y 

Z2 = Z1 ÷ S 

Z = Z2 + T 

4.7.1.3  Overview of CAPE’s Fractile and Beta Methods 
MITRE’s CAPE modelers have used two methods to calculate improved information 

about functions of random variables.17 They are the Fractile Method and the Beta Method. 
Both methods use the pairwise decomposition strategy just described. Consistent with the 
second principle of CAPE modeling, both methods also use analytic approximations that 
achieve improved results while minimizing the calculations required. The Beta Method is 
especially appropriate when one has the statistics of historical data: mean, variance, 
maximum, minimum. The Fractile Method is especially appropriate when one has the 
historical data itself, not just the statistics that represent the data. 

With the Fractile Method, one uses discrete random variables to approximate continuous 
random variables, selecting values for each discrete variable that match equally-probable 
intervals in the continuous variable’s domain. While a continuous random variable can take 
on an infinite number of possible values, its approximation, a discrete random variable, is 
constructed to take on only a few values. This makes it feasible to compute the function of 
two variables for all possible (discrete) combinations of the variables. For instance, two 
discrete variables with five equally-probable values each for miles traveled and fuel 
consumed can easily be used to compute 25 separate, equally probable values for miles per 
gallon. The resulting 25 values can be used to find the average miles per gallon, or they can 
be used in other probabilistic calculations. 
                                                 
17  See Henry Neimeier, “Nonlinear Multiattribute Risk Simulation,” unpublished paper, ca. January 1996, 

where both methods are defined and described. 
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The Beta Method is somewhat simpler to implement than the Fractile Method. It applies 
when the function of the random variables is arithmetical, involving only addition, 
subtraction, multiplication, and division. Instead of approximating the random variables with 
distributions, CAPE modelers use standard probability formulas to combine the means and 
variances of the random variables to approximate the mean and variance of the arithmetical 
function of the variables. They also keep track of the two bounds of the arithmetical function, 
which are its greatest value and its least value. Then they fit the bounds and the approximate 
mean and variance to a beta probability density function for the function.  

The Beta Method, unlike the Fractile Method, requires that the domains of the random 
variables and of the function of the variables be bounded finitely. That is, one must be able to 
reasonably approximate each distribution with a finite domain, specifying a maximum value 
and a minimum value. 

With both the Fractile Method and Beta Method, one ends up with a probability 
distribution or density function for the function of the random variables. This result may then 
be used to calculate better information about yet another function of random variables, to 
implement the threshold method (p. 34), or to find the mean of the function of the random 
variables.  

4.7.2  The Fractile Method 

4.7.2.1  Introduction 
Let us say that two independent continuous random variables, X and Y are to be 

combined by the function f(X,Y) into a third random variable Z. So, Z = f(X,Y). Let us also 
say that X, Y, and Z may take on values within bounded or unbounded sets of the real 
numbers (for instance, from zero to twenty, or from minus infinity to twenty). Finally, let us 
say that a continuous, monotonically increasing cumulative distribution function G(x) is 
defined for X, and another H(y) is defined for Y.18  

In the Fractile Method, a discrete random variable, X’, with equally probable values of 
X’, is selected to approximate the random variable X. Another, Y’, is selected to approximate 
the random variable Y. All combinations of X’ and Y’ are combined with the function f(X,Y). 
From the result, a set of equally probable Z’ values is selected to represent the random 
variable Z. 

                                                 
18  The cumulative distribution function (CDF) for an independent random variable X is a function G(x) that 

gives at any value x of X the probability that X is less than or equal to x, i.e., G(x) = Prob(X ≤ x). The 
derivative of G(x) with respect to x is the probability density function for X, g(x). The fractiles of the 
random variable X are defined in terms of the CDF. The “p fractile” is defined as the value of X, xp, for 
which G(xp) = p. For instance, the “0.8 fractile” is the value of x for which G(x) = 0.8. 
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4.7.2.2  Constructing discrete approximations to the random variables 
The possible values of X’ are selected from the domain of X. Likewise the possible values 

of Y’ are selected from the domain of Y. For instance, if X (or Y) is defined as a real number 
varying between 15 and 35, then the possible values of X’ (or Y’) might be chosen to be 17, 
21, 25, 29, and 33. The method for selecting values of X’ is described next in terms of X and 
G(x). The same method is used to select values of Y’ using H(y) instead of G(X). The method 
has been called the “Bracket Median” method.19 

To select the values of X’, we imagine that the domain of X is divided into a number 
(e.g., 3, 5, 7, 9) of equally probable intervals. The intervals are not equal in terms of X itself, 
but in terms of G(x). For instance, if xa and xb divide the domain of X into three equally 
probable intervals, where xa < xb, then G(xa) = 1/3 and G(xb) = 2/3. So the interval (-∞, xa) 
has probability 1/3, the interval (xa, xb) has probability 1/3, and the interval (xb, ∞) has 
probability 1/3. 

After the domain of X is divided into equally probable intervals, we find one value of X’ 
to represent each interval. We could select X’ to be the average value of X within the interval, 
or – if the interval is bounded – the midpoint of the interval. Instead, we select X’ as the 
median of X in the interval. Thus X’ is the value of X such that the conditional probability 
that X is greater than X’, given X is in the interval, is 0.5. 

When considered from the standpoint of G(x), not from the standpoint of X, the medians 
defining the possible values of X’ occur at the midpoints of the equally probable intervals. 
Suppose, as described above, that xa and xb divide the domain of X into three equally 
probable intervals, so that G(xa) = 1/3 and G(xb) = 2/3. Let us call the medians of X in these 
three intervals x1, x2, and x3. The medians are the values of X that make G(x1) = 1/6, G(x2) 
=1/2, and G(x3) = 5/6. These are the midpoints of the three intervals (0 to 1/3), (1/3 to 2/3), 
and (2/3 to 1). 

Expressed in a formula, the medians xi for N equally probable intervals are chosen at the 
points where G(xi) = (i - 0.5)/N, for i ranging from 1 to N. The selected values for N equally-
probable intervals are all considered equally probable, with probability 1/N. 

4.7.2.3  Constructing an approximation of the function of the random variables 
To select values of Z’ to represent Z, first we use the Bracket Median method to construct 

X’ and Y’. We construct X’ and Y’ both to have the same number of possible values, N, and 
we make sure the number of possible values is odd (e.g., 3, 5, 7, 9). Then we calculate N 2 

                                                 
19  The Bracket Median method for approximating a continuous probability distribution is described in Robert 

T. Clemen, Making Hard Decisions; An Introduction to Decision Analysis (Boston, PWS-Kent Publishing 
Company, 1991), p. 220. 



 
 

51 

candidate values of Z’ by finding values of Z’ = f(X’,Y’) for all N 2 possible combinations of 
X’ and Y’. The candidate values are all equally probable; each has probability 1/N 2.  

These N 2 values of Z’ make a fine discrete approximation of Z’, except that there are too 
many of them if Z’ is going to be combined in a pairwise decomposition process with more 
random variables. Accordingly, the N 2 values of Z’ are “condensed” to N values, as follows. 
First the values are sorted in order from least to greatest. Then, beginning at position 
(N+1)/2, every Nth value is selected. (The start at position (N+1)/2 discards an equal number 
of values at the start and end of the sorted set of values.) The resulting N values are all 
considered equally probable, with probability 1÷N. They are the Fractile Method’s discrete 
approximation of random variable Z. 

The reason for condensing the N 2 values back to N values is to keep the calculations at a 
manageable level when several other functions of random variables will be computed. For 
instance, if we are interested in a function of four different random variables, and we 
approximate each with a 9-element discrete variable, we would in principle have to compute 
9×9×9×9 = 6,561 combinations of the discrete variables. But if we decompose the problem 
into operations on two variables at a time, and condense back to nine elements after each 
operation, then we have to compute only 9×9 + 9×9 + 9×9 = 243 combinations. In general, to 
generate a discrete function of M independent random variables with the Fractile Method, 
condensing at each stage, one computes the values of only (M-1)N 2 combinations. Otherwise 
one would compute the values of N M combinations. 

The quality of the Fractile Method’s results increases with N. That is, nine equally 
probable intervals give more accuracy than three intervals. Henry Neimeier has compared the 
accuracy of the results when various values of N are used with various functions f(X,Y).20  

4.7.2.4  Procedural Summary of the Fractile Method 
The Fractile Method has the following steps for calculating N equally probable 

representative values of Z = f(X,Y): 

1. Choose an odd number, N (e.g., 3, 5, 7, or 9). 

2. Calculate values x1, x2, …, xN-1, xN to represent X in using f(X,Y); calculate them as 
values of x (i.e., fractiles) corresponding to 

xi = G -1(Fi)  for i = 1 to N 
where Fi = (i - 0.5)/N and  
where inverse function G -1(u) gives the value of x for which G(x) = u 

                                                 
20  Henry Neimeier, “Nonlinear Multiattribute Risk Simulation,” unpublished paper, ca. January 1996. 
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3. Calculate values y1, y2, …, yN-1, yN to represent Y in using f(X,Y); calculate them as 
values of Y (i.e., fractiles) corresponding to 

yi = H -1(Fi)  for i = 1 to N 
where Fi = (i - 0.5)/N and  
where inverse function H -1(u) gives the value of y for which H(y) = u 

4. Using Z = f(X,Y), calculate values of Z for all N 2 combinations of the representative 
values of X and Y. (These N 2 values are all equally probable since they represent 
equally probable combinations of X and Y.) 

5. Sort the N 2 values of Z in increasing order. 

6. Select N of the N 2 values of Z as follows: Start with the value in position (N+1)/2 
down the list; then select every N th item down the list from there. Discard the rest of 
the N 2-N values of Z. 

The values of Z selected in Step 6 are the N points for a discrete random variable Z’ that 
approximates the random variable Z. The N points are equally probable, with probability 
equal to 1÷N. 

4.7.2.5  Using the Fractile Method with Dependent Variables 
The Fractile Method’s procedure, as described above, applies only to functions of 

independent random variables. However, the method can be extended easily for functions of 
two dependent variables. Letting X and Y be dependent random variables, we now define 
G(x) to be the marginal distribution function for X, and we define H(y|x) to be the distribution 
function for Y conditioned on knowing that the value of X is x.21 As before, we use G(x) to 
calculate N representative values of X. Then we use H(y|x) to calculate N equally probable 
representative values of Y for each of the representative values of X. That is, for each 
representative X value, calculate a different set of N representative Y values. A total of N+N 2 
fractiles must be calculated. The reason is that Y now depends probabilistically on X, so that 
there is a different distribution function of Y for each value of X.  

Though the two random variables are dependent, there are still only N 2 combinations of 
X and Y to consider for computing the Z values with f(X,Y). It is just that the representative Y 
values have to be recalculated for each different representative value of X. Otherwise, the 
calculation for Y’ proceeds as described in the basic and Bracket-Median processes above.  
                                                 
21  Let us define G(x,y) to be the joint distribution function for X and Y, where G(x,y) is the joint probability 

that X is less than or equal to x and that Y is less than or equal to y. Then the marginal distribution function 
for X is simply G(x) = G(x,∞). The conditional distribution for Y, H(y|x), is the ratio of the partial 
derivatives of G(x,y) and G(x), both derivatives taken with respect to X:  H(y|x) = Gx(x,y)/Gx(x). (Be careful 
in calculating H(y|x) if G(x,y) is not continuously differentiable for all combinations of x and y.) 
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The Fractile Method for dependent variables is easy to apply when there are only two 
random variables. However, the process is more complex for more than two variables, and 
the amount of calculation increases exponentially with the number of variables. The increase 
in calculation for dependent variables comes in the number of fractiles computed, not in the 
number of combinations of x and y. Whether the variables are dependent or not, one has to 
compute only (M-1)N 2 combinations. In general, however, for M dependent variables, one 
has to calculate N(N M-1)/(N-1) fractiles. For instance, using N = 9 and M = 4, one would 
have to calculate 7,380 fractiles to find a function of four dependent random variables. By 
contrast, for M independent variables, one has to compute only M × N fractiles, or 4×9 = 36 
fractiles in the example. 

4.7.3  The Beta Method 

4.7.3.1  Introduction 
The most typical functions of random variables in CAPE models are addition, 

subtraction, multiplication, and division. For instance, 

• One adds the number of targets in each range band to find the total number of targets 
in the theater. 

• One divides the number of images awaiting exploitation by an exploitation rate to 
find the time needed to exploit all the images. 

• One multiplies a sensor’s collection rate by the number of hours it collects images to 
find the total number of images collected. 

For such arithmetic functions of random variables there exist standard formulas for 
calculating the mean and variance of the function from the means and variances of the 
random variables. These formulas for arithmetic functions are often easier to use than the 
Fractile Method since one does not need to calculate the fractiles for each random variable. 

However, the mean and variance alone for a function of random variables may be 
insufficient for our needs in CAPE modeling. We may also need a complete probability 
density function (PDF) or cumulative distribution function (CDF) for the function of the 
random variables. How does one generate a PDF for the arithmetic functions?  

The beta distribution is known to be a robust PDF that one can apply, using its four 
parameters, to approximate the shapes of many different PDFs. The four parameters of the 
beta PDF can be calculated from four statistics: the maximum, minimum, mean, and variance 
of its random variate. Hence, if we calculate the mean and variance for a function of two 
random variables with the standard formulas, and if we simultaneously calculate the 
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maximum and minimum of the function, we can use the beta distribution to approximate the 
PDF for the function of random variables.22 

In the Beta Method, the independent random variables are represented by only four 
statistics – the mean, variance, maximum, and minimum – instead of by the N fractiles of the 
Fractile Method. Using the decomposition strategy, whenever two variables are combined 
into a subfunction, the eight (2×4) statistics for the two independent variables are used to 
generate the corresponding four statistics for the function of the random variables. Only after 
all the subfunctions are processed, so that one has the four statistics for the complete 
function, does one use the final four statistics to calculate the parameters for the 
corresponding beta distribution. While the Beta Method’s name comes from the fitting of a 
beta probability distribution, most of the work is in the calculation of the four statistics, 
which do not involve the beta distribution at all. 

4.7.3.2  Calculating the Four Statistics 
For two random variables, X and Y, and one arithmetic function, Z = f(X,Y), formulas are 

provided below to calculate the statistics of Z in terms of the statistics of X and Y. In the 
formulas, the mean, variance, maximum, and minimum, are represented by the symbols μ, V, 
Max, and Min, respectively, with appropriate subscripts to designate X, Y, and Z. All the 
formulas assume that X and Y are independent random variables. The formulas for Min and 
Max assume that both X and Y are non-negative real numbers, which is typical for CAPE 
analyses. (Other formulas, more complex, are needed if either X or Y can be negative or if 
they are dependent random variables.) 

Table 1-1. Arithmetic Functions of Two Independent Variables 

 

Sum,  Z = X + Y 

μz = μx + μy   and   Vz = Vx + Vy   (exact, not approximate) 

Minz = Minx + Miny 

Maxz = Maxx + Maxy 

 
                                                 
22  If either of the two random variables is unbounded (can become infinitely large), then the beta 

distribution’s maximum and minimum probably cannot be calculated. Instead, to use the beta distribution, 
it is necessary to say that “for all practical purposes” the random variables are bounded and to specify the 
bounds.  
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Difference,  Z = X – Y 

μz = μx - μy   and   Vz = Vx + Vy   (exact, not approximate) 

Minz = Minx - Maxy 

Maxz = Maxx - Miny 

 

Product,  Z = XY 

μz = μxμy   and   Vz = VxVy + Vxμy
2 + Vyμx

2  (exact, not approximate) 

Minz = MinxMiny 

Maxz = MaxxMaxy 

 

Division,  Z = X÷Y 

μz = (μx÷μy)[1 + (Vy÷μy
2)]       (approximate) 

Vz = (μx÷μy)2[(Vx÷μx
2) + (Vy÷μy

2)]  (approximate) 

Minz = Minx÷Maxy 

Maxz = Maxx÷Miny 

4.7.3.3  Defining the Beta Distribution 
CAPE modelers use the beta distribution to approximate other PDFs because it can 

represent a “skewed” mono-modal distribution for which the mean and variance can be 
selected separately.23 The normal distribution is less preferred because it cannot represent a 
skewed distribution, though the mean and variance can be chosen separately. A triangular 
distribution can be skewed, but its variance cannot be selected separately from its mode. 

The beta distribution is most naturally applied to random variables that are uncertain 
proportions: What fraction of American registered voters will vote this year? What fraction 
of customers will return for a second visit to the restaurant? Zero at the bottom and 1.0 at the 
top bound such random variables. In CAPE analyses, many of the random variables are also 
bounded by practical considerations, though they are not proportions between zero and 1.0. 

                                                 
23  The skew of the distribution is determined practically by the relative position assigned to the mean between 

the maximum and minimum.  Suppose the minimum and maximum estimated for an uncertain random 
variable are 100 and 200. Someone might also estimate a mean of 120. This causes a skew “to the left.” 
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Typical bounded random variables for CAPE analyses are sorties per aircraft per day and 
images exploited per day per analyst. 

The formula for the beta probability density function b(w) for random variable W, where 
W must be between a minimum of 0.0 and a maximum of 1.0, is as follows:  

b(w) = k w r-1(1-w)n-r-1   

Where  
n, r, and w are real numbers (not necessarily integers); 
n > r > 0;  1 ≥ w ≥ 0; and 
k is a normalizing constant. 

In the formula, note that when  n = 2r,  b(w) is symmetric about the value w = 0.5. 
Therefore the ratio  n/2r governs the skew of the distribution to the left or right of 0.5. 

The mean value of W is μW = r/n, and the variance is  VW = r(n-r)/n2(n+1). One may also 
calculate the variance as VW = μW(1-μW)/(1+n). Therefore, for a given mean value μW, the 
value of n determines the variance of the distribution. 

4.7.3.4  Fitting the Beta Distribution to the Four Statistics 
For an arbitrary bounded random variable Z, if we are given the four statistics of 

minimum, maximum, mean, and variance, we fit them to a beta distribution as follows: 

1. Let the linear function W = (Z – Minz)/(Maxz – Minz) transform the random variable Z 
to the range of a beta variate W, namely 0.0 to 1.0. Likewise the inverse function   
Z = W × (Maxz - Minz) + Minz converts beta variates to the domain of Z.  

2. Given the linear function, calculate the mean and variance of W from the four 
parameters of Z as follows: 

μW = (μz – Minz)/(Maxz – Minz) 

VW = Vz /(Maxz – Minz)2  

3. Calculate the beta parameters, n and r, as follows: 

n = [μW(1-μW)/VW] – 1 

r = μW n. 

Caveat. The beta distribution with parameters n and r will have the same mean and 
variance, appropriately transformed, as the random variable Z. The shape of the beta 
distribution will usually be a good match to the shape of the random variable’s distribution. 
However, there are cases where it is not a good match, such as when Z’s distribution function 
is lognormal. Though it is usually a good approximation, it is up to the analyst to judge the 
suitability of the approximation in each case. 
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Appendix A 

Justification of the CAPE Principles 

The three principles of the CAPE methodology produce C4ISR models that differ greatly 
from many existing models used for military operations research. Such existing models are 
used to statistically estimate the performance of systems by repeated next-event simulations 
of the systems’ operation. MITRE staff believe that the simplifications of the CAPE 
methodology, which avoids statistical sampling, are more appropriate to the class of 
problems they address than the other models. There are several reasons, as follow: 

First, the class of problems to which CAPE models are applied stretch the imagination 
into areas of C4ISR not previously modeled and for which definitive information for 
modeling often does not exist. The CAPE methodology supports an experimental 
development of conceptualizations of the study problem throughout the course of the study, 
using sensitivity analysis to discover major effects. Generally, a discrete-event simulation is 
a poor vehicle for trying out new broad conceptualizations or for conducting sensitivity 
analyses: 

• A discrete-event simulation takes much time and computational resources to produce 
statistically valid results. This inhibits broad reformulation of the models, and it 
inhibits sensitivity analysis. Often, only a few iterations of the simulation can be 
generated, when hundreds are required for statistically significant results.  

• In discrete-event simulation, the “causal chain” linking random variables to the 
MOEs is obscured through the use of random number generation and statistical 
sampling. That is, the sampling process introduces noise that makes it hard to 
measure the sensitivity of MOEs to changes in model parameters. In CAPE models, 
where there is no sampling, the sensitivity effects are easy to measure precisely.  

Second, the class of studies to which CAPE models are applied involves the quick 
exploration of a large, complex C4ISR system, the identification of key factors affecting 
performance, and the comparison of alternative hypothetical combinations of new ISR 
capabilities in terms of mission effectiveness. Discrete-event simulation models are generally 
unsatisfactory for such work. They take too much time for model-building, data-collection, 
verification, and validation.  

Third, discrete-event simulation models have “higher fidelity” than CAPE models, 
because they represent individual events that actually occur in life, and they model a time-
line with state histories. However, such higher fidelity does not of itself guarantee higher 
accuracy or validity. In fact, it may guarantee the opposite. If a phenomenon is well 
understood at the aggregate level, for instance, but is poorly understood at the event level, 
then an analysis based on an event-driven simulation model will lead to less certain results 
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than one based on an aggregate model. In the class of studies to which CAPE is applied, the 
C4ISR phenomena generally are not understood well at either the aggregate level or the 
event level, and the questions under study are framed at the aggregate level. Therefore 
MITRE’s strategy is to model and analyze questions at the aggregate level with the CAPE 
methodology.  

Fourth, since there is so much unknown in the C4ISR field, it is very difficult to validate 
the parametric inputs to any model. To develop high fidelity, event-level models, one must 
generally specify much more parametric input than one would specify for use in aggregate 
CAPE models. Event-level models therefore increase the task of validation. If time and 
knowledge are short, an aggregate CAPE model with validated inputs can be more believable 
than a complex event-driven model that has too many inputs to be well validated. 

 

 



 

 

61 

Appendix B 

Deriving a Model of Target Movement 

by Kenneth P. Kuskey, Ph.D. 
with contributions by Brian K. Schmidt, Ph.D.24 

March 2000 

B.1  Introduction 
For many sensor-to-shooter (STS) systems, significant delay occurs between sensing a 

mobile ground target and engaging it with a weapon system. Such delay is typical for STS 
systems based on still-image sensors such as electro-optical, infrared, and radar. (They are 
less typical of continuous-coverage systems such as real-time video and moving-target 
sensors.) During the delay, the target may move so far that it cannot be found again and 
successfully engaged by the weapon system sent to look for it. One major purpose of new 
investment in such still-image STS systems is to shorten the delay, so that the mobile target 
is more likely to be found and engaged successfully. 

Target movement involves the interaction of complex probabilistic phenomena. Because 
of the limited time available for completing MITRE’s initial CAPE analyses of STS systems 
in the C4ISR Mission Assessment of 1997, MITRE staff modeled target movement quickly 
with heuristic methods instead of deriving models from fundamental considerations.25 Later, 
during 1998 and 1999, a probabilistic model of target movement was derived with basic 
probability calculus from explicit assumptions. An overview of the new target movement 
model follows, describing its assumptions and derivations. 

B.2  General Assumptions 
In CAPE analyses, target-movement models represent broad target classes instead of 

individual targets. Each target class may include several different kinds of actual targets. 

                                                 
24  The author gratefully acknowledges MITRE staff member Dr. Brian K. Schmidt’s contributions to this 

work. Brian pointed out the bias one experiences in observing target movement. This stimulated the author 
to model uncertainty in pause time as a function of sensor revisit time. Brian developed alternatives, often 
shorter and deeper, for many derivations the author reports here. He provided key equations (see Section 
B.8) to provide an exact analytic solution where the author had been content with an approximation.  

25  CAPE is an acronym for C4ISR Analytic Performance Evaluation. C4ISR is an acronym for Command, 
Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance. 
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Typical target classes are “short mobile column” and “large long-dwell target.” The CAPE 
modeler’s basic assumptions about the movements of such targets are as follows: 

• Mobile ground targets alternate between moving and pausing. 

• A target’s alternating move times Tm and pause times Tp are independent random 
variables. (Actual values of the random variables are signified by tm and tp.) 

• A target’s location is considered to be a geometric point, even though some targets, 
such as a mobile column, may be large. 

• A target’s velocity V in its moves is a random variable, independent of move times 
and pause times. (Actual values of the velocity are symbolized by v.) 

• During move times, the target moves a distance X = Tm × V. The distance is a 
function of the two random variables Tm and V. (Actual values of distance are 
symbolized by x.) 

• The uncertainties in Tm, Tp , and V for each target class are represented by triangular 
probability density functions (PDFs):  fm(tm),  fp(tp), and  fv(v). These PDFs typically 
are conditional PDFs, differing for each combination of range band and phase of the 
war. The PDFs “average over” all possible reasons for pauses and moves of the target 
class in the various range bands and phases of the war. 

B.3  Pausing-Target Model 
For imagery-based STS systems, the image may be recorded when the target is moving 

or when it is pausing. Arguably, the most important case to analyze is the image made of a 
target that one can tell was pausing. There is potential to strike the target before it moves. By 
contrast, the moving target is certain to move from its observed location, and it is likely to 
move too far to be found by a strike sortie (assuming that a pilot cannot find a target that has 
moved more than about 5 km). 

For the target observed pausing, one generally will not know exactly when the pause 
began nor when it will end. One only knows when the observation was made. The pause may 
have begun just before the observation, or it may have ended just after the observation. To 
represent this state of knowledge, the CAPE modeler makes the following assumptions: 

• Surveillance and reconnaisance, which are activities to observe targets, occur on a 
regular cycle. The time between attempted observations is the revisit time, tr. 

• One can tell whether a target was pausing at the time it was observed, but the 
collected information does not indicate when the pause began, nor does it indicate 
when the pause will end.  
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• One can determine from past records of observations whether a currently observed 
target was pausing in the same location at the previous observation. This assumption 
simplifies the analysis of situations where the revisit time is shorter than the 
maximum length of time a target pauses. It is not necessary when the revisit time is 
longer than the maximum pause time.  

• For our purposes, the only observations of interest are those in which a target is 
observed pausing that was not observed pausing in the same location at the previous 
observation. We assume the decision to attack a target is based on its initial 
observation. Later observations might locate the target more precisely, or help to call 
off a strike if the target should move. However, these are taken to be second order 
considerations as compared to the main action of planning and launching the strike. 

Given the assumptions, the modeler’s first question about the pausing target is “How 
long will the pause continue after the target is observed?” The following derivation produces 
a cumulative distribution function (CDF) Frp(trp|tr) for the target’s “remaining pause time,” 
Trp, given the revisit time, tr. The results match the statistics of simulated observations of 
remaining pause times, where the simulations are based on the assumptions above. 

B.3.1  Summary Derivation of the CDF for Remaining Pause Time 
1. Consider the current observation and the most immediate prior observation. Let us 

say that a pause began at some time after the prior observation. That pause may still 
be in progress at the current observation, or it may have already completed. 

2. Let Ts stand for how long it was before the current observation that the pause started, 
a random variable. (So ts = 1 means the pause started 1 hour before the observation.)  

3. Represent uncertainty in Ts as a uniform PDF  fs(ts) over the domain (0, tr), where tr is 
the deterministic time between revisits of the sensor system. Ts cannot be greater than 
tr, since we postulated that the pause began after the prior observation. We are also 
assuming, by use of the uniform distribution, that pauses will start with equal 
likelihood at all times between observations. 

4. Define the remaining pause time Trp to be a function of the two random variables, Tp 
and Ts, namely Trp = Tp – Ts. Note that Tp may be smaller than Ts, so that Trp may be 
negative. It is negative in those cases where the pause ends before the current 
observation. Though unobserved, such pauses are important for this derivation. 

5. Derive a CDF Grp(trp|tr) for Trp using fs(ts) and fp(tp), assuming that Tp and Ts are 
probabilistically independent. In general, the CDF for Trp will include both positive 
and negative values of Trp, corresponding to observed and unobserved pauses.  

6. Only the non-negative values of Trp apply in our situation, since we know that the 
pause was in fact observed. Therefore,  
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7. Using the CDF just derived, Grp(trp|tr), derive a new conditional CDF for Trp given Trp 
is non-negative. Call this CDF Frp(trp|tr).  

The derived CDF, Frp(trp|tr), answers the modeler’s first question, “How long will the 
pause continue after a target is observed?” Interestingly, the answer depends on the revisit 
time tr. The shorter the revisit time, the more likely one is to observe the target near the 
beginning of its pause. Therefore, the shorter the revisit time, the longer one can expect to 
see the target pause after it is observed. The equations will be developed below. 

B.3.2  Detailed Derivation of the CDF for Remaining Pause Time 
Steps 5, 6, and 7 of the summary derivation are illustrated here so that readers may 

understand the basis of the final equations for Frp(trp|tr). A derivation from first principles is 
used to illustrate the relationship between Trp, Tp, and Ts. 

B.3.2.1  Framing the Situation 

Figure B-1.  Calculating the Probability that Trp ≤ trp 

Consider the graph in Figure B-1. In the graph, the possible values of Ts range from 0 to 
tr. The possible values of Tp are shown ranging from zero upward without limit. The three 
45° lines represent the parametric equation trp = tp – ts for three different representative 
values of trp, which are a, 0, and –b. There is one line for each different value of trp. Note that 
the higher the 45° line is on the graph, the larger its value of trp. Also note that the line for trp 

trp = a = tp - ts

trp = 0 = tp - ts

trp = -b = tp - tsa

b tr0
0

Ts

Tp

a + tr
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= 0 runs through the origin of the graph. Any 45° line below the one running through the 
origin represents a negative value of trp. 

For any specific value of trp, the line representing it divides the graph into two parts. 
Below the line, in the shaded region, are all combinations of Tp and Ts for which Trp is less 
than trp. Above the line are all combinations of Tp and Ts for which Trp is greater than trp. 

B.3.2.2  The Mathematical Problem 
The probability that Trp is less than or equal to a specific value trp is equal to the 

probability that a random combination of Ts and Tp is in the shaded region of the graph that 
falls below the line corresponding to the value trp. Because we assume Ts and Tp are 
probabilistically independent, the calculation amounts to integrating fp(tp) and fs(ts) over the 
region below the line to find the joint probability that both Ts and Tp are in the region. 

To carry out the integration there are two cases to consider: trp > 0 and trp ≤ 0. The 
integration result differs somewhat in the two cases. However, as it turns out, the more 
complex result for the case for trp > 0 can be applied in the second case as well. Certain terms 
in the complex result are always zero in the second case. Consequently, we will document 
only the first case. 

In the figure, consider the line intersecting the Tp axis at a. The region for which Trp ≤ a 
is the trapezoid shown shaded on the graph. It is bounded on the right by tr since Ts can be no 
larger than tr. It is bounded on the top by tp = a + tr since that is the largest possible value of 
tp consistent with keeping Tr less than or equal to tr and having trp = a. We want to calculate 
the probability that random samples of Tp and Tr will both be in the trapezoid.  

B.3.2.3  The Mathematical Solution 
The shaded trapezoid may be divided into two non-overlapping parts as shown in Figure 

B-2: (1) a rectangle in which all values of Tr are equally likely, regardless of the value of Tp; 
and (2) a triangle in which the value of Tp constrains the range for Ts. Because the rectangle 
and triangle do not overlap, the probability that a joint sample (Ts, Tp) is in the trapezoid may 
be calculated as the sum of the two probabilities that the sample is in the two parts of the 
trapezoid:  

( ) ( ) ( )riangleTTTRectangleTTTrapezoidTT pspsps ⊂+⊂=⊂ ),(Pr),(Pr),(Pr  

We first consider the rectangle, which has values of Tp that are less than or equal to a. In 
the rectangle, all values of Ts are equally likely for any value of Tp. The probability that a 
random pair (Tp, Ts) is in the rectangle is calculated by integrating the joint density function 
fp(tp) × fs(ts) over the rectangular region, as follows: 
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Because all values of Tr are equally likely for all the values of Tp in the rectangle, this 
equation may be written simply as 

 

Figure B-2.  Two Regions for Calculating Probabilities 

 

Second we treat values of Tp that are greater than a. The region where Tp is greater than a 
is the triangle that sits on top of the rectangle. In the triangle, only some values of Ts are 
within the trapezoid, not all possible values. As shown on the graph, with the dashed lines, 
the allowable range of Ts for a given value of tp is the interval from  tp–a  to tr. The 
probability that a random pair (Tp, Ts) is in the triangle is calculated by integrating the joint 
density function fp(tp) × fs(ts) over the triangular region, as follows: 
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Because fs(ts) is a uniform distribution on the domain (0, tr), the inner integral may be 
simplified as follows: 

 

This equation may be separated into two integrals:  

 

The first integral can be written simply in terms of  Fp(a + tr) − Fp(a). The second 
integral is more interesting. Let us define a CDF for “experienced pause time,” Tep, to be 
Fep(tep), calculated from fp(tp) in the following manner:26 

 

where the denominator is the average pause time with respect to fp(tp), calculated as 

 

Let us now introduce Fp(tp) and Fep(tep) into the probability we were calculating for the 
triangle: 

                                                 
26  For an interpretation of experienced pause time, please see the end of this subsection, after the derivation. 

dttt ft
t

tF ep
p

p
epep ⋅⋅= ∫ )(1)(

0

dttftt pp ⋅⋅= ∫
∞

)(
0

( ) ∫∫
−

+
=⊂

r

p

ssspp

r

psp

t

at
tfdttf

ta

a
dtTriangleTT )()(),(Pr

( )
r

pr
pp

r

psp t
att

tf
ta

a
dtTriangleTT

)(
)(),(Pr

−−+
=⊂ ∫

( ) ( ) ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ +
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ +
+=⊂ ∫∫ ppp

r

prpp

r

prsp ttf
ta

a
dtttf

ta

a
dttaTriangleTT )(1)(1),(Pr



 

 

68 

 

Adding the two probabilities that (Tp, Ts) is either in the triangle or the rectangle, we 
obtain the probability that (Tp, Ts) is in the trapezoid: 

 

This equation has been derived with the understanding that a is greater than or equal to 
zero. In fact, if one derives the probability that (Tp, Ts) is within the trapezoid when a is 
negative, then the above equation applies, but it is simplified: When a is less than zero, the 
two terms Fp(a) and Fep(a) are both zero and drop out because the terms are only defined for 
non-negative values. From the simplified equation, we may note that whenever a is less than 
-tr, both Fp(a + tr) and Fep(a + tr) are zero. So the probability (Tp, Ts) is within the trapezoid is 
zero. This means that the smallest allowable value of a, without knowing anything further 
about the possible limits of Fp(tp), is -tr.  

Now we are in a position to complete step 5 of the summary derivation, writing the CDF 
Grp(trp|tr) for Trp, as follows, where trp has been substituted for a in the equation above: 

 

This equation may be simplified in form through the use of an interesting auxiliary 
function, which we will label FFp(tp).27 It is based on fp(tp), as follows: 

 

In terms of the auxiliary function, we may write the equation for Grp(trp|tr) as follows: 

                                                 
27  Brian Schmidt brought this auxiliary function to the author’s attention. 
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Finally, given Grp(trp|tr), we complete step 7 of the summary derivation by calculating 
Frp(trp|tr) as the conditional CDF for Trp when Trp is known to be greater than zero: 

 

Note that Grp(0|tr) has the following form and is easy to evaluate: 

 

When fp(tp) is a triangular, uniform, or exponential probability density function, the 
calculation of Frp(trp|tr) is purely analytical, involving no numerical integration or table-
lookup procedures.  

B.3.2.4  Special Cases: Constant and Once-Only Target Observation 
Two special cases of Frp(trp|tr) merit consideration. In one case, the revisit time, tr, gets 

very small and approaches zero, corresponding to constant observation of the target. In the 
other case, the revisit time gets very large and approaches infinity, corresponding to once-
only observation. 

To consider the two cases, we assume that fp(tp) is a triangular PDF with three 
parameters: min, mode, and max.28 Then fp(tp) is zero for values of tp less than min and also 
for values of tp greater than max. It is positive at mode and at all other values of tp between 
min and max. Similarly, Fp(tp) and Fep(tp) are zero for values of tp less than min, and 1.0 for 
values of tp greater than max. In what follows, let us assume without true loss of generality 
that min is greater than zero. 

When tr is smaller than min, the factor Grp(0|tr) becomes zero. That is, interpreting the 
meaning of Grp(0|tr), it is impossible for a pause to both start and end between two 
                                                 
28  Brian Schmidt has provided the author a more general analysis of the two cases in which he assumes only 

that fp(tp) = 0 for all tp greater than some value max. He does not need to assume, as the author does, that 
fp(tp) has any particular form, such as the triangular PDF, to obtain the same results developed here. 
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successive observations when the time between observations is smaller than min. So every 
pause will be observed if tr is smaller than min. In this situation, Frp(trp|tr) = Grp(trp|tr), and it 
may be written as follows: 

 

From this formula, it may be shown with L’Hôspital’s rule that when tr is zero, so that 
the target is constantly observed, then Frp(trp|tr = 0) = Fp(trp). That is, the PDF of the target’s 
observed pause times is the basic pause time distribution, fp(tp). 

Now consider the second case, when tr becomes large. If tr is larger than max, then the 
formula for Grp(0|tr) is simplified as follows: 

 

When this is substituted into the formula for Frp(trp|tr), and when we recognize that the 
two terms Fp(trp+ tr) and Fep(trp+ tr) both equal 1.0 when tr is greater than max, then all the 
terms with tr fall away, leaving the following result that is no longer a function of tr: 

 

Consequently, if tr exceeds max, even approaching infinity, the CDF Frp(trp|tr) no longer 
changes when tr increases. It is constant with respect to tr. 

B.3.2.5  Interpretation of Experienced Pause Time 
The PDF Fep(tep) represents the distribution of actual pause times (not just the remaining 

pause times, but the full pause times) one would experience by observation if  

• the pauses are generated from a target-movement process based on fp(tp);  

• observations are made regularly at a fixed time interval (the revisit time tr); and  

• tr is greater, for practical purposes, than the maximum pause time allowed by fp(tp).  

The form of Fep(tep) accounts for an observational “bias” that occurs with large revisit 
times. With such revisit times, long pause times will cumulatively take up a larger fraction of 
time in a long history of pauses than will short pauses, as compared to the fraction of long 
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pauses that are generated. Even if short pauses are just as likely to occur when pauses are 
generated, the process of observation “biases” the observer toward seeing more of the long 
pauses than the short pauses.  

While Fep(tep) describes the CDF for experienced pause when the revisit time is longer 
than the maximum pause time, there is a complementary situation in which the revisit time is 
shorter than the minimum pause time. In that situation, every pause is experienced, short or 
long, and the appropriate CDF for the experienced pause is Fp(tep), which is the CDF based 
on fp(tp).  

B.4  Moving-Target Model 
The next question a modeler asks about the mobile ground target is “Given it was 

observed pausing, how far might it have moved from its observed location if we attack it  t  
hours after the observation?” To answer the question, we derive a CDF  FX(x|t,tr) for the 
distance  X  the target may have moved in the time  t  since it was observed, given the revisit 
time for observations, tr. 

To simplify the derivation of FX(x|t,tr), the CAPE modeler makes the following moving-
target assumptions:  

• During a move, the target moves strictly away from the location of its last pause. This 
may not always be true, but it simplifies analysis. 

• The target starts moving no more than once after it is observed; it may have finished 
moving and be pausing again at time t. This assumption represents an understanding 
that the first full move after the observed pause will usually move the target such a 
large distance that it cannot be found and engaged if a strike should arrive after the 
move is over. If it does not move the target out of range, we are assuming the target 
will be pausing (for the second time) when the strike arrives.29 

Given the additional assumptions, it takes two steps to answer the movement question. 
First, FX(x|t,tr) is “expanded” over target velocity v and expressed as the weighted average 
over velocity of another CDF for X, one that is conditioned on specific values of both t and 
velocity v. We call the conditional CDF FX(x|v,t,tr) and calculate FX(x|t,tr) with it as follows: 

 

                                                 
29  Brian Schmidt has sketched a procedure for calculating target movement probabilities in the general case 

where several moves and pauses are possible during the time t. 
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Second, FX(x|v,t,tr) is derived from Frp(trp|tr) and fm(tm). This derivation requires a bit of 
backward thinking. The CDF FX(x|v,t,tr)  is the probability that the distance moved (X) is 
smaller than or equal to x at time t given velocity v. We will approach this by deriving the 
complementary CDF, 1 – FX(x|v,t,tr), which is the probability that the distance moved is 
larger than or equal to x at time t given velocity v.  

The complementary CDF is derived through the following line of thinking: 

1. For the distance moved to be larger than or equal to x at time t, two events must have 
occurred: 

− Event #1: The pause ended before t, leaving enough time (x/v) for the target to 
move at least as far as x. That is, the pause time Trp was less than or equal to  t - 
x/v; and 

− Event #2: The move starting when the pause ended was at least long enough (x/v) 
for the target to move the distance x before beginning another pause. That is, the 
move time Tm was greater than or equal to x/v. 

2. The two events are probabilistically independent since pause times and move times 
are probabilistically independent. 

3. The probability that both events occur, so that the distance moved at time t must be 
larger than or equal to x, is the product of the probabilities of the two independent 
events. 

4. The probability for the first event comes from the cumulative distribution function for 
remaining pause time, as follows: 
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⎜
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v
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5. The probability of the second event may be expressed in terms of the complement of 
the CDF for move time, Fm(tm ), which is based on  fm(tm), as follows: 

P(Event #2) = ⎟
⎠
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⎜
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v
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6. The product of the two probabilities yields the complementary cumulative probability 
we seek, as follows: 
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7. From which we may conclude that 
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8. Finally, substituting this result into the equation that expanded FX(x|t,tr) over velocity, 
we obtain the CDF for the distance X the target may have moved at time t, 
conditioned on revisit time tr. 

 

This equation answers the movement question, “Given the target was observed pausing, 
how far might it have moved from its observed location if we attack it t hours after the 
observation?” Again, as for the first question, the answer depends on the revisit time, tr. The 
shorter the revisit time, the smaller the distance the target will tend to move, because the 
remaining pause will tend to be longer. In practice, MITRE staff members have used 
numerical integration to implement the equation. 

B.5  Response-Time Model 
The next question the modeler asks about a mobile ground target is “Given it was 

observed pausing, how far might it move from its observed location by the time we can get a 
strike there to attack it?” This question brings the response time of the sensor-to-shooter 
system into our consideration. The analysis expands to include the arrival of the strike, and 
its time of arrival is another random variable. The arrival occurs an uncertain length of time 
T after the observation. We will call T the “response time” of the sensor-to-shooter system. It 
is the time that occurs between the observation and the arrival of the strike at the target’s 
observed location. We will assume that T is probabilistically independent of when the target 
moves. As the PDF for T, we write fT(t). 

Previously, CAPE modelers have represented the uncertainty in response time with a 
simple two-part approach: Define the time from observation to launch of the strike as a 
random variable with a triangular PDF; add to that time a deterministic time that it takes to 
reach the target after launch. In Dynamic CAPE, for instance, they estimated the mode for 
the observation-to-launch time. Then they set the maximum to be 50 percent greater than the 
mode; and they set the minimum to be 50 percent less. Then they added the flyout time to 
each of these three PDF parameters. The resultant PDF represented their uncertainty about 
the length of time it takes to perform all the separate tasks of processing, exploitation, 
dissemination, target analysis, mission planning, mission preparation, and flyout of the strike. 
In Dynamic CAPE, the parameters for this PDF differ by type of sensor and intelligence/C2 
system supporting the sensor, strike platform, range band, and theater. 
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Given the PDF for response time (the triangular PDF that CAPE modelers have used 
previously, or another), it may be combined with FX(x|t,tr) to produce a CDF for the distance 
X the target may have moved between its observation and the arrival of the strike:  

 

This equation essentially averages FX(x|t,tr) over all possible response times. 

When the previous equation for FX(x|t,tr) is substituted into this integral, we obtain the 
following equation: 

 

Mathematically, this equation answers the response-time question. However, the equation 
leads to a practical problem. How does one calculate the integrals? To do a double integral 
numerically requires a great amount of calculation, on the order of N 2, where N is the 
number of intervals used for each integral.  

One approach is to calculate the inner integral over response time as an analytic result, 
under the assumption that both fp(tp) and fT(t) are triangular PDFs. That reduces the amount 
of numerical integration by a factor of N. MITRE staff member Brian Schmidt has derived 
equations to do such calculation. His results are sophisticated, elegant, and too complex to 
describe in detail. They are attached as an addendum at the end of this Appendix. 

Another approach, requiring a little less computation, is to approximate Frp(t-x/v|tr) with 
the first three terms of a Taylor Series so that the integral can be approximated analytically in 
terms of the mean and variance of the response time. This simplified approach is sketched 
here. It produces results similar to those of the analytic equations in many cases. However, it 
makes large errors in other cases, especially when the standard deviation of the response time 
is large relative to the mean. 

The mean and variance of the response time T are calculated as follows: 

 

The first three terms of the Taylor Series expansion, written in terms of the mean and 
variance of response time, are as follows: 
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Integrated over response time t, the second term always integrates to zero. The third term 
integrates to one half the variance of the response time multiplied by the second derivative 
shown. The second derivative, readily calculated from the equation for Grp(trp|tr), has a 
simple form: 

 

When the approximation for the integral over response time is substituted into the basic 
equation for FX(x|tr), we obtain the following equation, which involves just one numerical 
integration. It is an approximation to the answer to the modeler’s third question, “Given the 
target was observed pausing, how far might it move from its observed location by the time 
we can get a strike there to attack it?” While the equation may appear formidable, it is 
straightforward to compute: 

 

As cautioned above, MITRE staff should analyze the accuracy of this approximation, 
using the analytic approach, prior to using it in specific analyses. It will tend to be most 
accurate when the standard deviation of the response time is small relative to the mean. That 
may not be a typical situation. 

B.6  Capture Model 
The modeler’s response-time question has a corollary: “Will the target be within the 

‘engagement envelope’ or ‘acquisition basket’ of the strike sortie we send, as it arrives?” In 
other words, what is the probability that the target is captured by the strike sortie’s 
acquisition system at the time the sortie arrives?  

In the simplified concept of target engagement that is part of MITRE’s existing high-
level STS analyses, it is assumed that if the target is still within some specific distance s of 
its reported first-observed location then it is vulnerable to attack when a sortie arrives, with 
some probability of success. However, if the target is outside the required distance, it cannot 
be successfully attacked. 
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The capture question involves not only the distance the target might have moved, but also 
the geolocation error of the reported location. That is, the strike will be sent to the 
coordinates determined from the observation, but they might have been in error to some 
extent.  

To date MITRE staff have not modeled the combination of distance moved and 
geolocation error to determine the probability that the target is within the distance s. 
Accordingly, we can currently answer the question only as if there is no geolocation error. 

Let us define the engagement envelope for a specific strike platform/weapon combination 
as the distance s. Let us also say that if the target has moved any distance less than or equal 
to s then it is within the engagement envelope and will be captured by the strike sortie. Then 
in the special case where there is no geolocation error, the probability PC that the target is 
captured is written as follows: 

 

Note that this probability is dependent on tr. The smaller tr, the higher the probability will 
be, in general. 

B.7  Summary 
For many sensor-to-shooter (STS) systems, significant delay occurs between sensing a 

mobile ground target and engaging it with a weapon system. One major purpose of new 
investment in STS systems is to shorten the delay, so that the mobile target is more likely to 
be found and engaged successfully. 

To enable analysis of such investments, MITRE has derived a model of target movement. 
The model represents mobile ground targets in their race against the imagery-based STS 
system.  

Target movement involves the interaction of complex probabilistic phenomena. 
Accordingly the target movement model has been derived from explicit probabilistic 
assumptions using basic probability calculus.  

The derived model provides the analyst with probability distributions for 

• The pause that remains after a mobile target is observed pausing;  

• The distance the target may have moved at any specific time after it is observed; and  

• The distance the target may have moved when a strike sortie arrives to attack it, 
where the time of arrival is itself a random variable.  

These probability distributions are calculated from more basic probabilistic models of 
target movement time, pause time, and velocity, as well as from the revisit time used for 
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managing the surveillance and reconnaissance of targets. The distributions are used to 
calculate the probability that a target observed pausing will be within engagement range 
when a sortie, launched on the basis of the observation, arrives to attack the target. This 
involves a model of the sensor-to-shooter response time. 

The derived probability distributions have been implemented in software. They exist as 
Visual Basic code and as Analytica models. 

 

B.8  Addendum from Brian Schmidt 
Analytic Approach to Computing the Probability of Target Escape 
by Brian K. Schmidt 
6 October 1999 

This note presents an analytic approach for taking into account the “sense and respond 
time” distribution in the CAPE target movement model. The formulas presented here allow 
one to compute the probability of target escape exactly in the case where the “sense and 
respond time” distribution is triangular. 

B.8.1  Notation 
Given any probability density function f(t), we denote the cumulative distribution 

function (CDF) by F(t). Iterated cumulative distributions may then by defined as follows: 

( ) ( )∫
∞

−=
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nn dx xF      tF )1()(  

where F 
(1)(t) = F(t). 

B.8.2  Properties of the Triangle Distribution 
A triangle distribution is specified by giving three parameters: 

a =  minimum value 

m =  mode 

b =  maximum value 

From these values, all the properties of the distribution may be calculated. It is useful to 
define the quantities below: 

h =  height of the triangle 

 =  
ab −

2  
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A =  m – a = left side of base of triangle 

B = b – m = right side of base of triangle 

α = h/A 

β = h/B 

μ = mean value of the random variable 

 = 
3

bma ++  

k2 = ( )( )2B  AB  A ++2
36
1  

k3 = ( )( )( )22B  5AB  ABA ++− 2
1620

1 2  

The quantities k2 and k3 can be understood by relating them to the central moments: 

μn = nth central moment 

 = ∫
∞

∞−

− dt )t(f)t( nμ  

μ2  =    22k    (variance) 

μ3 = 36k−   (related to skewness) 

 

Using these quantities, we can give formulas for the density and iterated cumulative 
distribution functions. 

Interval f(t) F(t) F 
(2)(t) 

-∞ < t < a 0 0 0 

a < t < m α (t – a) ( )2
2
1 at −α  ( )3

6
1 at −α  

m < t < b β (b – t) ( )2
2
11 tb  -  −β  ( ) ( )3

6
1 tb     t −+− βμ

b < t < ∞ 0 1 ( ) t μ−  
 



 

 

79 

 

Interval F 
(3)(t) F 

(4)(t) 

-∞ < t < a 0 0 

a < t < m ( )4
24
1 at −α  ( )5

120
1 at −α  

m < t < b ( ) ( )4
24
1

2
1

2 tb  -   t  k 2 −−+ βμ  ( ) ( ) ( )5
120

1
6
1

23 tb     t  tk  k 3 −+−+−+ βμμ  

b < t < ∞ ( )2 t  k μ−+ 2
1

2  ( ) ( )   t  tk  k 3μμ −+−+ 6
1

23  
 

B.8.3  Remaining Pause Time 
In the CAPE target movement model, we are given a probability distribution for the 

target pause time. The “remaining pause time” is defined to be the amount of pause time that 
remains after the target has been detected by the sensor. 

Define: 

tr = sensor revisit time 

fp = density function for pause time 

frp = density function for remaining pause time  

The properties of frp can be derived from those of fp. (The basic formulas are derived in 
the writeup of the CAPE target movement model.) To summarize the results, it is convenient 
to introduce the following constants: 

cn = )()(
r

n
p tF  

γ = 
2

1
ctr −

 

Then the iterated cumulative distribution functions for remaining pause time are written as 
follows, for two cases: 

Case 1: When  t > 0: 

)(tFrp   = ( )2prp c - tF  -  ttF )()( )2()2( +γ  

)()2( tFrp   = ( )tc - c - tF  -  ttF 23prp )()( )3()3( +γ  

)()3( tFrp   = ( )2
2
1)4()4( )()( tc - tc - c - tF  -  ttF 234prp +γ  
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Case 2: When  t ≤ 0: 

)()( tF n
rp  = 0 

B.8.4  Probability of Escape 
After a target is detected by the sensor, a certain amount of time goes by before a weapon 

arrives to engage the target. We call this the “sense and respond time.” If this time is too 
long, the target may start moving before the weapon arrives and may get far enough away 
from its initial position that the weapon cannot find it. We call this “escape.” (This is not the 
same thing as “survival”; the target has a chance of surviving even if it does not escape, 
because the weapon may engage the target yet fail to destroy it.) 

Define: 

fs = density function for sense and respond time 

x = distance target must move in order to escape 

v = target speed 

In these calculations, we assume that x and v are given constants and that, in effect, the 
target does not pause a second time after it begins moving. (These assumptions can easily be 
relaxed, as is shown in the complete writeup of the target movement model.) It follows that: 

Pesc = probability of escape 

 = ∫
∞

−
0

dt )v/xt(F )t(f rps  

We will now analyze the case where the sense and respond time is given by a triangle 
distribution. In this case: 

Pesc = ∫
∞
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To evaluate these integrals, note that, for any constant k: 
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( )∫ − dt )v/xt(F k-t rp  
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For notational convenience, define: 

h(t,k) = ( ) )v/xt(F   -   )v/xt(F k-t (3)
rp

(2)
rp −−  

Then: 
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 = ( ) ( ))b,m(h-)b,b(h   -  )a,a(h-)a,m(h ssssssssss βα  

This expression may be easily evaluated using the formulas developed in the previous 
sections. In particular, this expression goes up as high as the third cumulative distribution for 
the remaining pause time; this may be computed using distributions going up to the fourth 
cumulative distribution of the pause time. If the pause time also satisfies a triangle 
distribution, these distributions are given by the formulas presented earlier in this note. 
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Glossary 

Analytic This term denotes that answers to questions about C4ISR systems are developed 
through the use of algebra and calculus and, with few exceptions, without the use 
of random number generation and statistical sampling methods. Mathematical 
equations and tables represent the characteristics (or properties) of the C4ISR 
system; they make up a model of the system. 

CAPE An acronym for “C4ISR analytic performance evaluation.” 

C4ISR Denotes an integrated system of command, control, communications, computers, 
intelligence, surveillance, and reconnaissance. It connotes a set of questions to 
answer about the total system, not merely about one component of the system. 
However, in our studies we sometimes focus on a single component of the system 
(e.g., communications) to determine its effects on the total system’s performance. 

Dynamic system  
  A system that is modeled and analyzed in terms of how it changes with time. For 

a “dynamic probabilistic system” the modeling and analysis involve the use of 
probabilities. 

Measure of effectiveness (MOE)  
  Denotes the quantification of a military outcome. The MOE is used to estimate 

day-to-day or ultimate success in conducting military operations. The outcome 
could be objective (percentage of enemy targets destroyed) or subjective (strength 
of the enemy commander’s will to fight).  

Measure of performance (MOP) 
  Denotes the quantification of the outcomes of intermediate processes, such as 

surveillance and targeting, that combine to produce military outcomes. The 
intermediate outcomes could be objective (photographs taken per hour) or 
subjective (strength of the enemy’s morale). 

Model “A set of propositions or equations describing in simplified form some aspects of 
our experience.”30 

Performance evaluation  
  Connotes that the main questions posed in studies that use CAPE models are 

questions concerning the performance of C4ISR systems: how the systems 
interact, what affects their performance, how the systems can be improved, and 
how different systems would perform against the same criteria. 

                                                 
30  Web Dictionary of Cybernetics and Systems 
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Probabilistic analysis  
  An analysis that is based in part on probabilities. Such analysis may be wholly in 

terms of probability calculus, or it may involve the use of random numbers and 
statistical sampling (e.g., Monte Carlo analysis). A probability is a number used 
to quantify and communicate one's confidence (belief) that a specific result is or 
will be true for an uncertain event, or that a specific decision outcome will result 
from a decision. Low numbers express low confidence, and high numbers express 
high confidence. 

Simulation  
  An analytical process that constructs a system’s state history in chronological 

order. Like a movie, a state history describes the condition of the system, 
including the condition of its subsystems, “at each of a chronological succession 
of instants.”31 

 

                                                 
31  G. W. Evans, II, G. F. Wallace, G. L. Sutherland, Simulation Using Digital Computers (Englewood Cliffs, 

N.J.: Prentice-Hall, Inc., 1967), p. 5. 
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