
SUBMITTED DRAFT

1

Sangam – A Distributed Pair Programming Plug-in for
Eclipse

Chih-wei Ho1, Somik Raha2, Edward Gehringer1, Laurie Williams1

1Department of Computer Science, North Carolina State University
Raleigh, NC 27606, USA, {cho, efg, lawilli3}@ncsu.edu

2Industrial Logic

Berkeley, CA 94708, USA, somik@industriallogic.com

Abstract

Pair programming requires two programmers
working together at one computer. However, the
trend toward globally distributed organizations
makes long-distance collaboration necessary.
Sangam is an Eclipse plug-in for Eclipse users to
share workspace so that developers may work as
if they were using the same computer. In this pa-
per, we will show how this is achieved in Eclipse
platform, and discuss our experience of distrib-
uted and collocated pair programming during the
development of Sangam.

1 Introduction
Thanks to the popularity of XP [2] and benefits of
pair programming (PP) [3], more programmers
are willing to pair with their colleagues during
software development. By definition, PP requires
programmers to work on the same computer.
However, because of industry globalization and
the trend towards distributed workforces, more
and more programmers on the same team work at
different sites, even on different continents. To
enjoy the benefit of PP, distributed team members
need to work as if they were sitting next to each
other. We propose Sangam 1 (Sangam means 2
“confluence or a flowing or meeting together” in

1 http://sangam.sourceforge.net
2 http://sangam.sourceforge.net/WhatDoesSangamMean.html

Sanskrit), a plug-in for Eclipse, as a tool for dis-
tributed PP. Sangam provides a user interface
specifically for distributed PP (DPP) and syn-
chronizes the development environments for both
programmers. The plug-in itself is developed by a
distributed team. In this paper, we will discuss
the available tools supporting distributed collabo-
ration and our experience with DPP. Additionally,
the implementation of Sangam will be presented.

The rest of this paper is organized as follows.
Section 2 provides the background of PP and dis-
tributed collaboration. Section 3 describes our
experience of collocated and distributed PP. Sec-
tion 4 presents the design of Sangam. Finally Sec-
tion 5 gives the current status of our work and
suggests future direction.

2 Background

PP has been practiced sporadically for decades [6],
but the popularity of the practice has grown by its
use within the Extreme Programming [2] software
development methodology. While geographical
distance is usually considered harmful to PP, there
are several situations where distributed collabora-
tion is necessary. This section provides back-
ground information on PP and distributed
collaboration.

2.1 Pair Programming
PP is a practice, whereby two programmers work
side by side at the same computer, continuously
collaborating on the same design, algorithm, code,

SUBMITTED DRAFT

2

or test [6]. One of the programmers is the driver,
who has the control of the keyboard and the
mouse, actively implements the program, and
explains the implementation to his or her partner.
The other is the navigator, who watches the driver;
reviews driver’s design; detecting driver’s errors;
and is a brainstorming partner. After a period of
time (usually less than one hour), the program-
mers switch their roles. Early evidence for the
effectiveness of PP was only anecdotal. Recent
researches find that pair programmers produce
code with higher quality without sacrifice of pro-
ductivity and have more job satisfaction [3] and
have more confidence in their products [7].

The necessity of working on the same com-
puter is a limitation of PP. Although research
shows that collaboration at a distance is difficult
to achieve [5], with industry globalization, dis-
tributed collaboration is becoming more common.
Additionally, in academia, some students have
schedule conflicts and cannot get physically to-
gether. To enjoy the benefit of PP when working
at one computer is not possible, we need a virtual
collaboration environment in which distributed
developers can work as if they were sitting to-
gether, using the same input devices and looking
at the same monitor.

2.2 Distributed Collaboration
Based on time arrangement, there are two forms
of collaboration: asynchronous and synchronous.
With asynchronous collaboration, the team mem-
bers work at different times and integrate their
work after they finish their tasks. There is typi-
cally a centralized server where the communica-
tion takes place for collaborative programming
efforts. SourceForge3 is one example of such a
server. PP belongs to the other category, synchro-
nous collaboration. There are two basic ap-
proaches for distributed synchronous
collaboration [4]. The first one is to broadcast the
display of the output of any application from a
member to all the others. This approach requires a
large amount of image information transmitted
across the network, but all applications can be
used in the environment without any modification.
Some applications, including VNC4 and Microsoft
NetMeeting5, use this method to share one per-

3 http://www.sourceforge.net/
4 http://www.realvnc.com/
5 http://www.microsoft.com/windows/netmeeting/

son’s desktop with collaborators. The second ap-
proach is to design the application specifically for
distributed collaboration. It requires specifically-
designed applications, but the user interface can
be more sophisticated and effective for the pur-
pose of collaboration. One example application is
Yahoo Messenger6. In Yahoo Messenger, when a
user sends a text message, the text, rather than the
screen buffer of the chat window, is sent through
the network. Also, its user interface is designed
for composing text messages.

In their research, Baheti et al use NetMeeting
as a tool for DPP [1]. They find out that, in terms
of productivity and quality, DPP is as effective as
collocated PP. Our experience shows that, while
shared-desktop tools can be used for distributed
PP, the display refresh rate can be too low for the
programmers to understand what their partners are
doing, especially when high-speed network con-
nection is not available. Therefore, we propose a
plug-in that is specifically designed for DPP in the
Eclipse development environment. Rather than
sending screen buffer information through the
network, Sangam transmits messages that are im-
portant for PP. The information is significantly
less than image data, so developers can use this
plug-in without broadband network

3 Experience

During the development of Sangam, we gained
some experience of both collocated and distrib-
uted PP. The team consists of 4 students in North
Carolina State University (NCSU) and 4 inde-
pendent programmers in California. When pairing
with a distributed partner, we used VNC for desk-
top-sharing, Eclipse for the development envi-
ronment, and Yahoo! Messenger for voice
communication. The experience of this project is
described in this section.

3.1 Collocated vs. Distributed
We had similar experience with this project. We
held weekly long-distance conferences for itera-
tion planning and velocity [2] tracking, and found
out that we delivered approximately the same
amount of functionality in the same amount of
time with collocated pairing as with distributed
pairing. Because we were so engaged in pro-
gramming tasks, we felt satisfied (and exhausted)

6 http://messenger.yahoo.com/

SUBMITTED DRAFT

3

after each pairing session, whether collocated or
distributed. Furthermore, we found PP to be an
efficient method for knowledge exchange. Al-
though we did have a Sangam developer’s guide7,
most of the required skills and techniques for this
plug-in were exchanged during PP. We believe
that this demonstrated the applicability of distrib-
uted PP.

One difference between collocated and dis-
tributed PP is the sense of presence. With distrib-
uted pairing, the navigator could lose
concentration more easily because the voice of the
driver came out from the speakers, not from
someone sitting physically next to the navigator.
However, this was not a problem for us. When the
navigator lost the attention, the driver noticed that
the navigator talked less and would ask the navi-
gator to contribute something. When working
collocated, it was easier to stay focused.

The other difference is in the social aspect of
programming in pairs. When the project started,
the developers did not know each other. The col-
located developers became familiar friends after
first few pairing sessions. However, for the devel-
opers in different locations, there was still a sense
of unfamiliarity among them, although they could
work very well when programming together.

3.2 Tool Support
The development team is distributed from coast to
coast. Most of the time, we had the luxury of
broadband Internet connection. The shared-
desktop tool we used worked well. Nevertheless,
we did notice the following shortcomings with the
tools we used that made it suboptimal for PP:
1. Unlike collocated pair programmers, distributed

pair programmers have control of his or her
mice and keyboards and can move the mouse or
type a keystroke at any time. It is irritating to
the driver when the navigator hits the keyboard
or moves the mouse accidentally.

2. Low display refresh rate can sometimes be con-
fusing. Something significant may be lost in the
remote display. For example, if the driver cop-
ies some text from an editor and paste it in an-
other editor, the navigator may only see the new
content of the later editor, without knowing
where it came from.

7 http://sangam.sourceforge.net/SangamDocumentation.html

3. It is better if both developers use the same reso-
lution for their monitors. Otherwise, one may
lose the trace of the mouse pointer.

These problems can be addressed with tools
that are specifically crafted for DPP, such as San-
gam.

4 Plug-in Design

We use an event-driven design for this plug-in.
When the driver does something in Eclipse (e. g.
cut and paste some code), the plug-in intercepts
the event and notifies the plug-in at the naviga-
tor’s end to automatically perform the same task.
There are three basic components in our design:
event interceptor, message server, and event re-
producer. Following are the detailed descriptions
of these components.

The responsibility of the event interceptor is
to capture the event when the driver does some-
thing in Eclipse and then send it to the message
server. Eclipse is an open environment and a user
may install virtually unlimited number of plug-ins.
It is impossible to capture all the events generated
by every plug-in. Our goal is to write a plug-in to
support synchronous development in Java pro-
gramming language. Therefore, we only focus on
Java editor events, program launching events, and
resource change events.

We use a centralized server for message han-
dling. All developers who want to participate in a
programming session need to connect to the same
server. It is possible for more than two developers
to join a programming session, but only one can
be the driver at a time. We use Kizna SyncShare8
as the message server because of its lightweight
protocol and easy SDK for development. While
the server can run on an individual machine, we
also developed an Eclipse plug-in for SyncShare
so that the server can also run within the devel-
opment environment.

When the driver does something in Eclipse,
the action needs to be reproduced at the naviga-
tor’s computer. This is done by the event repro-
ducer. When the event reproducer receives a
message from the message server, it parses the
message and interacts with Eclipse to perform the
driver’s action. Therefore, the navigator can see
whatever the driver is doing in Eclipse.

Because Sangam is designed for DPP, we can
specify the interaction between the driver and the

8 http://www.kizna.com/products_sync.html

SUBMITTED DRAFT

4

navigator. Figure 1 shows an Eclipse workspace
after installing Sangam. The Sangam Editor pro-
vides functionalities for the developers to edit
source code synchronously. The Sangam Launch-
ers enable the developers to launch a Java applica-
tion or JUnit test together. The developers use the
Sangam Toolbar to connect to or disconnect from
the message server (the left button on the toolbar)
and Start / Stop Driving (the right button on the
toolbar). In our implementation, a developer be-
comes the driver when he or she presses the Start
Driving button. The driver then has the control of
mouse and keyboard until he or she hits the Stop
Driving button. Although the navigator may also
move the mouse, it would not affect the cursor on
the driver’s screen. Currently this plug-in does not
prevent the navigator from typing, so paired pro-
grammers need to work out a protocol that one
should not use the keyboard if he or she is not the
driver.

We think it is important for the navigator to
visualize all actions of the driver. In our design,
the event reproducer uses the Eclipse API to per-
form the driver’s actions. The navigator is guaran-
teed to see all of the driver’s actions, and the
actual layout of the Eclipse window does not mat-
ter at all.

Currently, the lack of extensibility is the
greatest limitation of this plug-in. Because the
tool can only catch and reproduce predefined
events, it cannot support PP in other programming
languages or editors. For example, this plug-in
cannot be used with CDT (C/C++ Development

Tools) because it does not know how to intercept
CDT events.

5 Results and Future Work

The development of Sangam is an ongoing effort.
We keep adding new features to make Eclipse a
platform for PP. In the current version, Sangam
provides the following features:
 Editor synchronization: Including typing, selec-
tion, opening, closing, and view port scrolling
synchronization.

 Launching synchronization: The programmers
can launch or debug the same Java application
or JUnit test at the same time.

 Resource synchronization: When the driver
adds, deletes, or modifies the files in his or her
local disk using Eclipse, the same change will
also be reflected in the navigator’s local disk.

 Refactoring synchronization: From the aspect
of Eclipse API, refactoring is a complicated
form of resource and editor change. A single
refactoring may affect many files and the con-
tent of different editor windows. Sangam is de-
signed to deal with some special cases raised
with refactoring within Eclipse.

We try to synchronize the workspace of the
programmers participating a pair session. The
synchronization, however, conflicts with CVS
support in Eclipse. After a pairing session, be-
cause every programmer has the newest version
of the files, these files will be labeled as outgoing
change. Nonetheless, only one programmer can

Figure 1: Sangam Plug-in

SUBMITTED DRAFT

5

check in the code. The other needs to update it
from CVS, although the source code is already up
to date. Additionally, supporting software devel-
opment process in Sangam is our long-term goal.
To provide complete support for synchronized
distributed collaboration, we plan to continue this
project in three different directions:
1. More workspace synchronization: In the near

future, this plug-in will support all refactoring
synchronization. The issues with CVS should
also be resolved.

2. Data collection: The event-driven design
makes this plug-in an ideal tool for collecting
accurate data in PP, such as the amount of
time spent driving or navigating and the
amount of time required to pass a JUnit test.
The collected data will be used for further re-
search of PP and distributed collaboration.

3. Development activity support: Coding is but
a part of software development. Other devel-
opment activities, like the planning game [2],
can also benefit from distributed collabora-
tion. Our ultimate goal is to make Eclipse a
collaborative environment for the whole soft-
ware life cycle.

Acknowledgements

The author would like to thank Sree Vidhya Lak-
shmi, Francine Gatewood, Benny Sadeh, Jan
Chong, and Brad Failor, for their participation in
the development of this plug-in. The development
of the Sangam was funded in part by an IBM
Eclipse Innovation Award.

About the Authors

Chih-wei Ho is a Ph. D. student of Computer Sci-
ence in NCSU. His interest is in agile software
process and software testing. Somik Raha is the
founder of the Sangam project. He is a profes-
sional XP coach. Ed Gehringer and Laurie Wil-

liams are a professor and assistant professors at
NCSU, respectively.

References

[1] P. Baheti, E. Gehringer, and D. Scotts. Ex-
ploring the efficacy of Distributed Pair Pro-
gramming. In Proceedings of Extreme
Programming and Agile Methods – XP/Agile
Universe 2002, pages 208-220, Chicago, Illi-
nois, USA, 2002.

[2] Kent Beck. Extreme Programming Explained:
Embrace Change, Addison-Wesley, 2000.

[3] A. Cockburn and L. Williams. The Costs and
Benefits of Pair Programming. In Extreme
Programming Examined, pages 223-247, Ad-
dison-Wesley, 2001.

[4] C. A. Ellis, S. J. Gibbs, and G. Rein. Group-
ware: Some Issues and Experiences. In
Communications of the ACM, Vol. 34, Issue
1, Pages 39-58, January 1991.

[5] G. M. Olson and J. S. Olson. Distance Mat-
ters. In Human-Computer Interaction, Vol.
15, pages 139-179, 2000.

[6] L. Williams and R. R. Kessler. Pair Pro-
gramming Illuminated, Addison-Wesley,
2002.

[7] L. Williams, R. R. Kessler, W. Cunningham,
and R. Jeffries. Strengthening the Case of
Pair Programming. In IEEE Software, Vol. 17
Issue 4, pages 19-25, July/August 2000.

Appendix A: Copyright No-
tice
Authors will need to sign the ACM Copyright
Form (please refer to
http://www.acm.org/pubs/copyright_form.html
for details on rights retained by the authors

