Software Requirements Specifications Document
CS360

Software Requirements Specification (SRS) Document

The document in this file is an annotated outline for specifying software requirements, adapted from the IEEE Guide to Software Requirements Specifications (Std 830-1993).

CS360

Habegger, Parker, Rasler

Egg Alert And Real-time Logistics

Software Requirements Specification

Document

Version: (3.1)	Date: (12/09/2011)

Table of Contents

1. Introduction	5
1.1 Purpose	5
1.2 Scope	5
1.3 Definitions, Acronyms, and Abbreviations.	5
1.4 References	5
1.5 Overview	6
2. The Overall Description	6
2.1 Product Perspective	6
2.1.1 System Interfaces	6
2.1.2 Interfaces	6
2.1.3 Hardware Interfaces	6
2.1.4 Software Interfaces	7
2.1.5 Communications Interfaces	7
2.1.6 Memory Constraints	8
2.1.7 Operations	8
2.1.8 Site Adaptation Requirements	8
2.2 Product Functions	9
2.3 User Characteristics 	9
2.4 Constraints	10
2.5 Assumptions and Dependencies	10
2.6 Apportioning of Requirements.	10
3. Specific Requirements	10
3.1 External Interfaces	12
3.2 Functions	12
3.3 Performance Requirements	13
3.4 Logical Database Requirements	14
3.5 Design Constraints 	14
3.5.1 Standards Compliance 	14
3.6 Software System Attributes	14
3.6.1 Reliability	14
3.6.2 Availability	14
3.6.3 Security	14
3.6.4 Maintainability	15
3.6.5 Portability	15
3.6.6 Usability	15
3.7 Organizing the Specific Requirements	17
3.7.1 Requirements Organized by Application Architecture	17
3.8 Additional Comments	18
4.	Change Management Process	21
5.	Document Approvals	22
6.	Supporting Information	23
6.1. Product Overview	23

[bookmark: _Toc311196552]1. Introduction

The following subsections of the Software Requirements Specifications (SRS) outline the purpose of this document in relation to the product specified: The Egg Alert and Real-time Logistics (EARL) System.

[bookmark: _Toc311196553]1.1 Purpose

The purpose of this Software Requirements Specifications document is to list and detail the requirements inherent in the construction and maintenance of the Egg Alert and Real-time Logistics System. It is intended for the use of the client to verify that all required specifications for the EARL have been listed and considered. Further, this SRS will be used by the development team to ensure that all required design parameters are incorporated into the final product.

[bookmark: _Toc311196554]1.2 Scope

Software product to be produced: Software aspect of the Egg Alert and Real-time Logistics.
The goal of this project is the creation of a system that automates the process of determining when and where a chicken egg flow problem (egg jam) occurs on a system of conveyors through the chicken egg packaging process. Mechanical units will be installed along separate conveyors to track the flow of eggs down that specific conveyor; these units will report to a software program designed to determine if the flow is normal or abnormal. In the case of abnormal flow, the system will alert the user in real-time as to which specific line the problem has occurred on. In a typical poultry operation, thousands of feet of conveyor lines would need to be searched manually to locate a jam. This system would minimize the searching, thus reducing the labor cost needed to fix the problem. The system also eliminates unnecessary loss in performance by alerting users even when the packaging system is not in use.

[bookmark: _Toc311196555]1.3 Definitions, Acronyms, and Abbreviations.

EARL: Egg Alert and Real-time Logistics system
UART: Universal Asynchronous Receiver/Transmitter
BS2P40: BASIC stamp 2p 40-pin microcontroller module
CAT-5: Serial twisted pair category 5 RJ45 style cabling
CMap: Concept map

[bookmark: _Toc311196556]1.4 References

Voice of Customer Document
Functional Requirements Document
Group CMap Web Link: http://cmapspublic.ihmc.us/rid=1K1K884SC-X1XFD0-2TWB/RaslerSoftEngCmap.cmap

[bookmark: _Toc311196557]1.5 Overview

This document is segmented in such a way that the scope of the primary sections 1-2 is most suitable for those not involved in the construction of the EARL. The primary section 3 is most suitable for those involved in the construction of the software.

[bookmark: _Toc311196558]2. The Overall Description

[bookmark: _Toc311196559]	2.1 Product Perspective

This product is being created for an environment with the following already established requisites: A production line with individual conveyors feed eggs from lines of chicken coops into primary lines, which in turn feed into the packaging area. Further, a Windows PC with touch screen exists at the user-operated packaging area.

Already installed at the site is a software system best described as a robotic sorter that removes excessively large eggs from the packing process using optical recognition and grading. The mechanized solution being elaborated upon in this document will be implemented and work alongside this system.

[bookmark: _Toc311196560]2.1.1 System Interfaces

This software system is to be operated on a PC which also operates an existing system that detects egg size and removes eggs too large for packing. The two systems’ GUIs will share the existing touch screen monitor, but otherwise will not interact; menu options to access alarms indicated by the EARL will be incorporated into the GUI.

Likewise, the sensor system must be integrated into the existing conveyor system. Sensor arrays will be installed according to specifications made by the client.

[bookmark: _Toc311196561]2.1.2 Interfaces

A touch-screen interface currently exists for the egg-sorting software system. The EARL will necessarily be integrated into this interface. The interface includes a GUI for user input and display. It should allow parameters to be easily adjusted and provide a means of viewing log files. Touch-screen input will drive the user-adjustable parameters, alert toggles, and so on.

[bookmark: _Toc311196562]2.1.3 Hardware Interfaces

Mechanical counter devices should be installed on the conveyor in such a way as to gauge the flow rate of that particular conveyor belt. These sensors communicate with a conveyor specific microcontroller (BS2P40), and, utilizing a UART to communicate via serial lines, these serial transmissions should be converted to a USB specified transmission. This USB transmission will interface with the installation PC which should interpret and drive the communication of the whole system.

[bookmark: _Toc311196563]2.1.4 Software Interfaces

2.1.4.1 Software Interface of BS2P40:

The Sponsor specific microcontrollers require PBASIC to communicate serially with the UARTs.

2.1.4.2 Software Interface of the primary program:

The primary program will handle communication to the UARTs. This level of communication should be programmed for the Windows Environment. The communication data should interface with software that knows the state of each conveyor, utilizing algorithms to determine if an alert or response is necessary. This level of the software interfaces with a GUI, making alerts as necessary and describing the status of the conveyors. The preexisting touch screen should offer the user the ability to modify internal settings of the software - specifically including the ability to modify sensitivity settings and alert settings.

[bookmark: _Toc311196564]2.1.5 Communications Interfaces	Comment by Eva Redy: Specify the various interfaces to communications such as local network protocols, etc. These are protocols you will need to directly interact with. If you happen to use web services transparently to your application then do not list it here. If you are using a custom protocol to communicate between systems, then document that protocol here so designers know what to design. If it is a standard protocol, you can reference an existing document or RFC.

2.1.5.1 Communication Interface for UART to primary program software:

The communication interface between the UARTs and the PC will be established after the purchase of the UARTs and the BASIC Stamps. The specific hardware will determine the protocol necessary and may come prepackaged with the chip. The data will be transmitted over Cat-5 serial cable.

2.1.5.2 Communication Interface from UARTs to BS2P40:

These two components will communicate at the hardware level as specified by the microcontroller and UART chosen.

2.1.5.3 Communication Interface from BS2P40 to conveyor-positioned egg detector:

These two components will communicate at the hardware level as specified by the microcontroller.

[bookmark: _Toc311196565]2.1.6 Memory Constraints	Comment by Eva Redy: Specify any applicable characteristics and limits on primary and secondary memory. Don’t just make up something here. If all the customer’s machines have only 128K of RAM, then your target design has got to come in under 128K so there is an actual requirement. You could also cite market research here for shrink-wrap type applications “Focus groups have determined that our target market has between 256-512M of RAM, therefore the design footprint should not exceed 256M.” If there are no memory constraints, so state.

This system’s memory requirements will not exceed the memory allowance of the current system.

[bookmark: _Toc311196566]2.1.7 Operations

The user will interact with a GUI located at a packaging station, responding to alerts from the program by noting the location from whence the alert originated and manually fixing any problems.

[bookmark: _Toc311196567]2.1.8 Site Adaptation Requirements

Site adaptations would include:

Mechanical counters installed at intervals along individual conveyor lines.

Housing boxes established to hold both the UART and the BS2P40.

Wiring installed connecting counters to housing boxes.

Conduit installed to protect the wiring, prevent shorts, and prevent damage in the event of shorts.

Serial communication lines installed from each housing box to a workstation PC.

Note that, though these requirements are listed above, they are still considered in this document to be part of the overall system. They are listed above to aid in specifying a more generic system, rather than the specific instance that this document deals with.	Comment by Eva Redy: Page break to keep image and heading together. Remove if document length allows.

[bookmark: _Toc311196568]2.2 Product Functions 	Comment by Eva Redy: Provide a summary of the major functions that the software will perform. Sometimes the function summary that is necessary for this part can be taken directly from the section of the higher-level specification (if one exists) that allocates particular functions to the software product.
	Comment by Eva Redy: For clarity:
The functions should be organized in a way that makes the list of functions understandable to the customer or to anyone else reading the document for the first time.
Textual or graphic methods can be used to show the different functions and their relationships. Such a diagram is not intended to show a design of a product but simply shows the logical relationships among variables.
	Comment by Eva Redy: AH, Finally the real meat of section 2. This describes the functionality of the system in the language of the customer. What specifically does the system that will be designed have to do? Drawings are good, but remember this is a description of what the system needs to do, not how you are going to build it. (That comes in the design document).

[image:]

Mechanical egg detectors (white circles) placed on conveyor lines (orange bands) detect the presence of eggs as they move down conveyor belts.

Egg Jam Here!

[image:]Alert!

Conveyance can stop due to mechanical issues or a system overload (egg-jam). Users are often remote and unaware of the problem. When eggs stop being detected on one line or at one location (red circles), and other detectors are detecting egg flow, then there is a jam.

Because eggs flow at differing rates, the software is responsible for determining what is a jam and what is not. It is also responsible for determining error situations. For example: if a module is unresponsive and other modules are responsive, then the module needs maintenance.

The program is also responsible for intelligibly displaying the status of the system. It should also provide methods for alerting that are expressive.

[bookmark: _Toc311196569]2.3 User Characteristics 	Comment by Eva Redy: Describe those general characteristics of the intended users of the product including educational level, experience, and technical expertise. Do not state specific requirements but rather provide the reasons why certain specific requirements are later specified in section 3.

What is it about your potential user base that will impact the design? Their experience and comfort with technology will drive UI design. Other characteristics might actually influence internal design of the system.

The educational level, experience, and technical expertise required by the user is no more than required by methods already established in the process.

The user will be involved in the packaging process while operating this system, so considerations involving speed, usability and economy of (user) motion are important.

[bookmark: _Toc311196570]2.4 Constraints

The choice of hardware components will constrain methods used to communicate with the UARTs and BS2P40s. This is yet to be determined.

The system must be able to communicate across thousands of feet. This will limit the choice of cable and communication standards if signal repeaters are not an option.

The software will be hosted on a PC utilizing the Windows Operating System.

[bookmark: _Toc311196571]2.5 Assumptions and Dependencies

The characteristic assumption of the system is that an egg jam can in fact be determined from the given amount of detectors installed.

.Net or Java (as appropriate to the software) should be installed prior to software installation.

The response time of the system will be roughly proportional to the number of sensor units installed along the conveyor system, which is in turn dependent upon the length of the conveyor system and the chosen sensor density.

[bookmark: _Toc311196572]2.6 Apportioning of Requirements.	Comment by Eva Redy: Identify requirements that may be delayed until future versions of the system. After you look at the project plan and hours available, you may realize that you just cannot get everything done. This section divides the requirements into different sections for development and delivery. Remember to check with the customer – they should prioritize the requirements and decide what does and does not get done. This can also be useful if you are using an iterative life cycle model to specify which requirements will map to which interation.

Not applicable.

[bookmark: _Toc311196573]3. Specific Requirements 	Comment by Eva Redy: This section contains all the software requirements at a level of detail sufficient to enable designers to design a system to satisfy those requirements, and testers to test that the system satisfies those requirements. Throughout this section, every stated requirement should be externally perceivable by users, operators, or other external systems. These requirements should include at a minimum a description of every input (stimulus) into the system, every output (response) from the system and all functions performed by the system in response to an input or in support of an output. The following principles apply:

Specific requirements should be stated with all the characteristics of a good SRS
correct
unambiguous
complete
consistent
ranked for importance and/or stability
verifiable
modifiable
traceable
Specific requirements should be cross-referenced to earlier documents that relate
All requirements should be uniquely identifiable (usually via numbering like 3.1.2.3)
Careful attention should be given to organizing the requirements to maximize readability (Several alternative organizations are given at end of document)

	Comment by Eva Redy: Before examining specific ways of organizing the requirements, it is helpful to understand the various items that comprise requirements as described in the following subclasses. This section reiterates section 2, but is for developers not the customer. The customer buys in with section 2, the designers use section 3 to design and build the actual application.

Remember this is not design. Do not require specific software packages, etc unless the customer specifically requires them. Avoid over-constraining your design. Use proper terminology:
The system shall… A required, must have feature
The system should… A desired feature, but may be deferred till later
The system may… An optional, nice-to-have feature that may never make it to implementation.

Each requirement should be uniquely identified for traceability. Usually, they are numbered 3.1, 3.1.1, 3.1.2.1 etc. Each requirement should also be testable. Avoid imprecise statements like, “The system shall be easy to use” Well no kidding, what does that mean? Avoid “motherhood and apple pie” type statements, “The system shall be developed using good software engineering practice”

Avoid examples, This is a specification, a designer should be able to read this spec and build the system without bothering the customer again. Don’t say things like, “The system shall accept configuration information such as name and address.” The designer doesn’t know if that is the only two data elements or if there are 200. List every piece of information that is required so the designers can build the right UI and data tables.

	FR1
	Presentation Layer
	DP1
	

	FR2
	Business Layer
	DP2
	

	FR3
	Data Access Layer
	DP3
	

	FR4
	Persistence Layer
	DP4
	

	FR1.1
	Shall have a GUI
	DP1.1
	Windows Forms

	FR1.2
	Shall work with UI Process Components
	DP1.2
	Windows Forms

	FR1.3
	Shall utilize the preexisting Touch Screen
	DP1.3
	Utilize Existing Touch Screen

	FR1.1.1
	Shall have a Configuration Interface
	DP1.1.1
	Form which displays configuration settings and allows for changing settings

	FR1.1.2
	Shall have a Visual Alert
	DP1.1.2
	Generate window with alert information

	FR1.1.3
	Shall have an Audio Alert
	DP1.1.3
	Generate alert sound using computer speakers

	FR1.1.4
	Shall have a Status Screen
	DP1.1.4
	Generate window with status information

	FR2.1
	Shall run on Windows OS
	DP2.1
	Utilize Existing POS

	FR2.2
	BS2P40
	DP2.2
	Utilize the BS2P40 Microcontroller

	FR2.1.1
	Primary Application
	DP2.1.1
	.Net or Java Based Application

	FR2.1.2
	Shall utilize a Serial Communication Driver
	DP2.1.2
	C driver created to drive communication

	FR2.1.3
	Shall utilize the USB Standard
	DP2.1.3
	Software USB capable

	FR2.1.4
	Shall utilize the RS485 Standard
	DP2.1.4
	Convert communication signal to RS485

	FR2.1.1.1
	Shall have a Bridge to Communication Driver
	DP2.1.1.1
	Java: JNI , C++:Link C driver; both utilizing windows.h

	FR2.1.1.2
	Shall have a Hardware Polling Process
	DP2.1.1.2
	.Net or Java Control Structure Implemented to Poll Modules

	FR2.1.1.3
	Shall have a State Logic Process
	DP2.1.1.3
	.Net or Java Control Structure Implemented as a State Machine

	FR2.1.1.4
	Shall have a GUI Build/Update
	DP2.1.1.4
	.Net: Windows Forms, Java:Swing

	FR2.2.1
	Shall have a RS485 to RS242 Convertor
	DP2.2.1
	Hardware Converter for RS232 to RS485

	FR2.2.2
	Shall utilize an UART
	DP2.2.2
	Utilize provided UART

	FR2.2.3
	Shall utilize Communication Software
	DP2.2.3
	Hardware Implemented

	FR2.2.4
	Shall have Counting Software
	DP2.2.4
	PBASIC Control Structure to count eggs from hardware device

	FR3.1
	Primary Application
	DP3.1
	.Net or Java Based Application

	FR3.1.1
	Shall utilize a File Writer
	DP3.1.1
	.Net: TextFileWriter, Java:FileWriter

	FR3.1.2
	Shall utilize a File Reader
	DP3.1.2
	.Net: TextFileReader, Java:FileReader

	FR3.1.3
	Shall have a Parser/Tokenizer
	DP3.1.3
	.Net or Java based object to parse .ini files

	FR4.1
	Primary Application
	DP4.1
	.Net or Java Based Application

	FR4.2
	BS2P40 Microcontroller
	DP4.2
	

	FR4.1.1
	Shall utilize Configuration Settings
	DP4.1.1
	Configuration txt file

	FR4.1.2
	Shall have Log Files
	DP4.1.2
	log txt file

	FR4.1.3
	Shall have State Values
	DP4.1.3
	Configuration txt file

	FR4.2.1
	Shall have an Address
	DP4.2.1
	PBASIC Object stores address

	FR4.2.2
	Shall have State Values
	DP4.2.2
	PBASIC Objects can remember state

[bookmark: _Toc311196574]3.1 External Interfaces	Comment by Eva Redy: This contains a detailed description of all inputs into and outputs from the software system. It complements the interface descriptions in section 2 but does not repeat information there. Remember section 2 presents information oriented to the customer/user while section 3 is oriented to the developer.

It contains both content and format as follows:

Name of item
Description of purpose
Source of input or destination of output
Valid range, accuracy and/or tolerance
Units of measure
Timing
Relationships to other inputs/outputs
Screen formats/organization
Window formats/organization
Data formats
Command formats
End messages

	3.1.1 Primary Application Interface
		3.1.1.1 Component Interfaces
The primary application should interface through RS485 connection, communicating to a UART (provided by client) by serial to communicate the current state and count of each individual module.
		3.1.1.2 User Interfaces
The user should communicate through touch screen to adjust settings, control alerts, view logging information, etc.

	3.1.2 UART Interface
The primary application should communicate with the UART (provided by client) acting as an intermediary to the communication line from the module (controlled by the microcontroller) to the primary application. This communication should be RS232, interfacing to a RS485 converter.

	3.1.3 Microcontroller Interface
The microcontroller (provided by client) should interface with the primary application through an intermediary UART, so effectively, it should interface directly to the UART, communicating through whatever means is constrained by the provided components (TTL).

[bookmark: _Toc311196575]3.2 Functions	Comment by Eva Redy: Functional requirements define the fundamental actions that must take place in the software in accepting and processing the inputs and in processing and generating the outputs. These are generally listed as “shall” statements starting with "The system shall…

These include:

Validity checks on the inputs
Exact sequence of operations
Responses to abnormal situation, including
Overflow
Communication facilities
Error handling and recovery
Effect of parameters
Relationship of outputs to inputs, including
Input/Output sequences
Formulas for input to output conversion

It may be appropriate to partition the functional requirements into sub-functions or sub-processes. This does not imply that the software design will also be partitioned that way.

	3.2.1. Presentation Layer
		3.2.1.1 Display current state of conveyors
		3.2.1.2 Alert when state is inappropriate
		3.2.1.3 User interface adjustable parameters for sensitivity settings, etc.
		3.2.1.4 Operate on Windows platform
		3.2.1.5 Integrate touch screen capabilities

	3.2.2. Communication Layer
		3.2.2.1 Set up software on components for communication
		3.2.2.2 Integrate serial communication into Application
	
	3.2.3 Business Layer
		3.2.3.1 GUI driver for presentation layer
`		3.2.3.2 Communicate between persistence layer and presentation layer for settings, state, etc.
3.2.3.3 Bridge between high level software and low level communication software
		3.2.3.4 Main driving software application

	3.2.4. Persistence Layer
		3.2.4.1 Log files for debugging
		3.2.4.2 Settings files

	3.2.5. Hardware Layer
		3.2.5.1 Install hardware counters
		3.2.5.2 Install communication lines
		3.2.5.3 Install communication controllers
		3.2.5.4 Integrate into already built workstation

[bookmark: _Toc311196576]3.3 Performance Requirements	Comment by Eva Redy: This subsection specifies both the static and the dynamic numerical requirements placed on the software or on human interaction with the software, as a whole. Static numerical requirements may include:
	(a) The number of terminals to be supported
	(b) The number of simultaneous users to be supported
	(c) Amount and type of information to be handled
Static numerical requirements are sometimes identified under a separate section entitled capacity.

Dynamic numerical requirements may include, for example, the numbers of transactions and tasks and the amount of data to be processed within certain time periods for both normal and peak workload conditions.

All of these requirements should be stated in measurable terms.

For example,

95% of the transactions shall be processed in less than 1 second

 rather than,

An operator shall not have to wait for the transaction to complete.

(Note: Numerical limits applied to one specific function are normally specified as part of the processing subparagraph description of that function.)

The system will be installable on one PC. It is tailored to service one contiguous conveyor system, although theorhetically it could retooled to monitor several at once. As it responds to only one terminal, it is largely intended for a single user; the remote alert system is currently geared to one device, which is intended to be operated by a different user than the operator stationed at the terminal.

The sensor capacity is currently not known, but we expect to load it with between 10 and 20 units, according to the length of the conveyor system and the density of sensor units required to accurately represent the state of the system. The time to poll all sensors is proportional to the number of sensors installed, with approximately a maximum of 5 seconds spent per sensor before the relay times out and moves on to the next one. Jam determination will be scheduled at least once per 5 full-system polls, and should take less than 2 minutes. Alerts will be scheduled immediately, if necessary, and polling will be suspended until resumed by the operator. This is a separate process from suspending the alarm, which merely keeps it from sounding until the alert system is reset.

Logging will occur at the time of an alert and should take 10 seconds or less.

[bookmark: _Toc311196577]3.4 Logical Database Requirements	Comment by Eva Redy: This section specifies the logical requirements for any information that is to be placed into a database. This may include:

Types of information used by various functions
Frequency of use
Accessing capabilities
Data entities and their relationships
Integrity constraints
Data retention requirements

If the customer provided you with data models, those can be presented here. ER diagrams (or static class diagrams) can be useful here to show complex data relationships. Remember a diagram is worth a thousand words of confusing text.

The data that is most likely to be stored in a database are the log files that describe the occrences of alert situations. A typical entry would include the date, the time, a snapshot of the system state (perhaps captured as a binary string), the system’s determination of the problem (jam or faulty module), and a confirmation or correction by the operator (optional). This data could be in a future system version that would use machine learning to better identify problem locations. The database would further be able to record a count of the day’s production. Use would be on an as-needed basis, so availability should be high. The database can be accessed from the touch-screen interface for further review and printing. Data will be retained at the discretion of the operator.

[bookmark: _Toc311196578]3.5 Design Constraints 	Comment by Eva Redy: Specify design constraints that can be imposed by other standards, hardware limitations, etc.

The system currently installed is based around a Windows PC. As our software will be installed onto the same PC, it must be compatible with the PC’s operating system.

The conveyor system extends for thousands of feet throughout the farm. Signal repeaters are currently deemed cost-prohibitive. This will limit the choice of available communication hardware and standards.

[bookmark: _Toc311196579]3.5.1 Standards Compliance 	Comment by Eva Redy: Specify the requirements derived from existing standards or regulations. They might include:
(1) Report format
(2) Data naming
(3) Accounting procedures
(4) Audit Tracing

For example, this could specify the requirement for software to trace processing activity. Such traces are needed for some applications to meet minimum regulatory or financial standards. An audit trace requirement may, for example, state that all changes to a payroll database must be recorded in a trace file with before and after values

There are no standards we currently know to apply to this project. The log files generated by the software will be in a format to be determined at a future date.

[bookmark: _Toc311196580]3.6 Software System Attributes	Comment by Eva Redy: This section is a heading only and should be left blank. -MP

There are a number of attributes of software that can serve as requirements. It is important that required attributes be specified so that their achievement can be objectively verified. The following items provide a partial list of examples. These are also known as non-functional requirements or quality attributes.

These are characteristics the system must possess, but that pervade (or cross-cut) the design. These requirements have to be testable just like the functional requirements. It’s easy to start philosophizing here, but keep it specific.

[bookmark: _Toc311196581]3.6.1 Reliability

The EARL should be able to identify a jam situation within 8 minutes from the initiation of stoppage at least 95% of the time. False positives (e.g. a particularly long break in egg production interpreted as a stoppage) should be limited to less than one occurrence per operation.

[bookmark: _Toc311196582]3.6.2 Availability

It is necessary for the EARL to be available on demand, as the encapsulating conveyor system is run on a variable schedule. It should be able to operate daily for a minimum of 18 hours continuously. In the event of a system failure, the EARL should be recoverable within 5 minutes.

[bookmark: _Toc311196583]3.6.3 Security

[bookmark: _GoBack]The function of the EARL is self-contained. The only interaction between the EARL and other programs is that its GUI is displayed concurrently on the same monitor as the GUI for the egg-sizing robot that is operated by the PC. The only trading of data occurs during the writing of log files. Should the EARL crash, it will not affect the operation of other programs. Further, should there be a malfunction or failure of a system module, the EARL will be able to report the occurrence and identify the bad microcontroller or UART.

[bookmark: _Toc311196584]3.6.4 Maintainability

The function of the EARL is divided into the following modules:
· GUI: Touch-screen interface for locating jams, disabling alarms, and viewing logs.
· Stamp programming: software for the BASIC microcontrollers.
· Data communication: software to relay messages between the PC and the sensor system.
· Jam logic: determination of a jam or other error from the collected input signals.
· Alert system: initiates visual and audio warnings to the user interfaces.
· Logging system: records time and locations of jams.
Commentary explaining system functions shall be incorporated into the code base. A change log making more detailed explanations may be implemented.

[bookmark: _Toc311196585]3.6.5 Portability

Portability is not a strong consideration for the EARL. The software is being tailored to integrate with a legacy system using components that the client already owns or is familiar with. Known portability issues are as follows:

· Software for the UARTs and BASIC stamp units will be coded in Parallax BASIC. This code is specific to the chosen equipment and may require retooling if these components should become unavailable.
· The main program (signal interpretation, jam determination and location, alerts, and user interface) will be coded in .NET or Java. While the intended platform is a Windows-based PC, this part could potentially be ported to other operating systems. We will not explore this possibility in the scope of this project.
· The communications software, which will be based largely on Windows API calls, may have hardware-specific components or parameters.

[bookmark: _Toc311196586]3.6.6 Usability	Comment by Eva Redy: Once the relevant characteristics are selected, a subsection should be written for each, explaining the rationale for including this characteristic and how it will be tested and measured. A chart like this might be used to identify the key characteristics (rating them High or Medium), then identifying which are preferred when trading off design or implementation decisions (with the ID of the preferred one indicated in the chart to the right). The chart below is optional (it can be confusing) and is for demonstrating tradeoff analysis between different non-functional requirements. H/M/L is the relative priority of that non-functional requirement.

The EARL is most likely to be used by nontechnical personnel. As such, the user interfaces will stress ease of use. The GUI should be minimalistic and menu-driven, featuring components that are oversized and easy to read.	Comment by Eva Redy: Definitions of the quality characteristics not defined in the paragraphs above follow:
•	Correctness - extent to which program satisfies specifications, fulfills user’s mission objectives
•	Efficiency - amount of computing resources and code required to perform function
•	Flexibility - effort needed to modify operational program
•	Interoperability - effort needed to couple one system with another
•	Reliability - extent to which program performs with required precision
•	Reusability - extent to which it can be reused in another application
•	Testability - effort needed to test to ensure performs as intended
•	Usability - effort required to learn, operate, prepare input, and interpret output

	ID
	 Characteristic
	H/M/L
	1
	2
	3
	4
	5
	6
	7
	8
	9
	A
	B
	C

	1
	Correctness
	M
	X
	1
	1
	1
	5
	1
	1
	8
	1
	1
	B
	C

	2
	Efficiency
	L
	1
	X
	3
	2
	5
	6
	2
	8
	2
	A
	B
	C

	3
	Flexibility
	M
	1
	3
	X
	3
	5
	3
	3
	8
	3
	3
	B
	C

	4
	Integrity/Security
	L
	1
	2
	3
	X
	5
	6
	4
	8
	9
	A
	B
	C

	5
	Interoperability
	H
	5
	5
	5
	5
	X
	5
	5
	8
	5
	5
	B
	C

	6
	Maintainability
	M
	1
	6
	3
	6
	5
	X
	6
	8
	6
	6
	B
	C

	7
	Portability
	L
	1
	2
	3
	4
	5
	6
	X
	8
	9
	A
	B
	C

	8
	Reliability
	H
	8
	8
	8
	8
	8
	8
	8
	X
	8
	8
	B
	C

	9
	Reusability
	L
	1
	2
	3
	9
	5
	6
	9
	8
	X
	A
	B
	C

	A
	Testability
	M
	1
	A
	3
	A
	5
	6
	A
	8
	A
	X
	B
	C

	B
	Usability
	H
	B
	B
	B
	B
	B
	B
	B
	B
	B
	B
	X
	C

	C
	Availability
	H
	C
	C
	C
	C
	C
	C
	C
	C
	C
	C
	C
	X

 	Comment by Eva Redy: Page break. Remove if document length allows.

[bookmark: _Toc311196587]3.7 Organizing the Specific Requirements	Comment by Eva Redy: THE FOLLOWING (3.7) is not really a section, it is talking about how to organize requirements you write in section 3.2. At the end of this template there are a bunch of alternative organizations for section 3.2. Choose the ONE best for the system you are writing the requirements for.
For anything but trivial systems the detailed requirements tend to be extensive. For this reason, it is recommended that careful consideration be given to organizing these in a manner optimal for understanding. There is no one optimal organization for all systems. Different classes of systems lend themselves to different organizations of requirements in section 3. Some of these organizations are described in the following subclasses.

[bookmark: _Toc311196588]3.7.1 Requirements Organized by Application Architecture	Comment by Eva Redy: We’ve removed most of the sections that were here previously for simplicity. Frankly, filling them all in makes for horrific redundancy -MP

[image:]
Each logical section will create a hierarchical node to nest the requirements as such:
FR0: Egg Alert and Real-time Logistics
 FR1: Presentation Layer
 FR1.1: Shall have a GUI
 FR1.1.1: Shall have a Configuration Interface
 FR1.1.2: Shall have a Visual Alert
 FR1.1.3: Shall have an Audio Alert
 FR1.1.4: Shall have a Status Screen
 FR1.2: Shall work with UI Process Components
 FR1.3: Shall utilize the preexisting Touch Screen
 FR2: Business Layer
 FR2.1: Shall run on Windows OS
 FR2.1.1: Primary Application
 FR2.1.1.1: Shall have a Bridge to Communication Driver
 FR2.1.1.2: Shall have a Hardware Polling Process
 FR2.1.1.3: Shall have a State Logic Process
 FR2.1.1.4: Shall have a GUI Build/Update
 FR2.1.2: Shall utilize a Serial Communication Driver
 FR2.1.3: Shall utilize the USB Standard
 FR2.1.4: Shall utilize the RS485 Standard
 FR2.2: BS2P40
 FR2.2.1: Shall have a RS485 to RS242 Convertor
 FR2.2.2: Shall utilize an UART
 FR2.2.3: Shall utilize Communication Software
 FR2.2.4: Shall have Counting Software
 FR3: Data Access Layer
 FR3.1: Primary Application
 FR3.1.1: Shall utilize a File Writer
 FR3.1.2: Shall utilize a File Reader
 FR3.1.3: Shall have a Parser/Tokenizer
 FR4: Persistence Layer
 FR4.1: Primary Application
 FR4.1.1: Shall utilize Configuration Settings
 FR4.1.2: Shall have Log Files
 FR4.1.3: Shall have State Values
 FR4.2: BS2P40 Microcontroller
 FR4.2.1: Shall have an Address
 FR4.2.2: Shall have State Values

[bookmark: _Toc311196589]3.8 Additional Comments	Comment by Eva Redy: Whenever a new SRS is contemplated, more than one of the organizational techniques given in 3.7 may be appropriate. In such cases, organize the specific requirements for multiple hierarchies tailored to the specific needs of the system under specification.

There are many notations, methods, and automated support tools available to aid in the documentation of requirements. For the most part, their usefulness is a function of organization. For example, when organizing by mode, finite state machines or state charts may prove helpful; when organizing by object, object-oriented analysis may prove helpful; when organizing by feature, stimulus-response sequences may prove helpful; when organizing by functional hierarchy, data flow diagrams and data dictionaries may prove helpful.

In any of the outlines below, those sections called “Functional Requirement i” may be described in native language, in pseudocode, in a system definition language, or in four subsections titled: Introduction, Inputs, Processing, Outputs.

	The Axiomatic Design Process was used to map individual Functional Requirements to Design Parameters. These mappings were used to isolate instances of redundancies. The Design Matrix is shown below:

	
	DP1:
	DP2:
	DP3:
	DP4:

	FR1: Presentation Layer
	X
	
	
	

	FR2: Business Layer
	
	X
	
	

	FR3: Data Access Layer
	
	
	O
	

	FR4: Persistence Layer
	
	
	
	O

	
	DP1.1: Windows Forms
	DP1.2: Windows Forms
	DP1.3: Utilize Existing Touch Screen

	FR1.1: Shall have a GUI
	X
	X
	X

	FR1.2: Shall work with UI Process Components
	O
	X
	

	FR1.3: Shall utilize the preexisting Touch Screen
	
	
	X

	
	DP1.1.1: Form which displays configuration settings and allows for changing settings
	DP1.1.2: Generate window with alert information
	DP1.1.3: Generate alert sound using computer speakers
	DP1.1.4: Generate window with status information

	FR1.1.1: Shall have a Configuration Interface
	X
	
	
	

	FR1.1.2: Shall have a Visual Alert
	
	X
	
	O

	FR1.1.3: Shall have an Audio Alert
	X
	X
	X
	O

	FR1.1.4: Shall have a Status Screen
	
	
	
	X

	
	DP2.1: Utilize Existing POS
	DP2.2: Utilize the BS2P40 Microcontroller

	FR2.1: Shall run on Windows OS
	X
	

	FR2.2: BS2P40
	
	X

	
	DP2.1.1: .Net or Java Based Application
	DP2.1.2: C driver created to drive communication
	DP2.1.3: Software USB capable
	DP2.1.4: Convert communication signal to RS485

	FR2.1.1: Primary Application
	X
	X
	X
	

	FR2.1.2: Shall utilize a Serial Communication Driver
	
	X
	X
	X

	FR2.1.3: Shall utilize the USB Standard
	
	
	X
	

	FR2.1.4: Shall utilize the RS485 Standard
	
	
	
	X

	
	DP2.1.1.1: Java: JNI , C++:Link C driver; both utilizing windows.h
	DP2.1.1.2: .Net or Java Control Structure Implemented to Poll Modules
	DP2.1.1.3: .Net or Java Control Structure Implemented as a State Machine
	DP2.1.1.4: .Net: Windows Forms, Java:Swing

	FR2.1.1.1: Shall have a Bridge to Communication Driver
	X
	
	
	

	FR2.1.1.2: Shall have a Hardware Polling Process
	X
	X
	O
	

	FR2.1.1.3: Shall have a State Logic Process
	
	O
	X
	

	FR2.1.1.4: Shall have a GUI Build/Update
	
	
	
	X

	
	DP2.2.1: Hardware Converter for RS232 to RS485
	DP2.2.2: Utilize provided UART
	DP2.2.3: Hardware Implemented
	DP2.2.4: PBASIC Control Structure to count eggs from hardware device

	FR2.2.1: Shall have a RS485 to RS242 Convertor
	X
	
	
	

	FR2.2.2: Shall utilize an UART
	
	X
	
	

	FR2.2.3: Shall utilize Communication Software
	
	
	X
	

	FR2.2.4: Shall have Counting Software
	
	
	
	X

	
	DP3.1: .Net or Java Based Application

	FR3.1: Primary Application
	X

	
	DP3.1.1: .Net: TextFileWriter, Java:FileWriter
	DP3.1.2: .Net: TextFileReader, Java:FileReader
	DP3.1.3: .Net or Java based object to parse .ini files

	FR3.1.1: Shall utilize a File Writer
	X
	
	

	FR3.1.2: Shall utilize a File Reader
	
	X
	

	FR3.1.3: Shall have a Parser/Tokenizer
	
	
	X

	
	DP4.1: .Net or Java Based Application
	DP4.2:

	FR4.1: Primary Application
	X
	

	FR4.2: BS2P40 Microcontroller
	
	O

	
	DP4.1.1: Configuration txt file
	DP4.1.2: log txt file
	DP4.1.3: Configuration txt file

	FR4.1.1: Shall utilize Configuration Settings
	X
	O
	O

	FR4.1.2: Shall have Log Files
	O
	X
	O

	FR4.1.3: Shall have State Values
	O
	O
	X

	
	DP4.2.1: PBASIC Object stores address
	DP4.2.2: PBASIC Objects can remember state

	FR4.2.1: Shall have an Address
	X
	O

	FR4.2.2: Shall have State Values
	O
	X

4. [bookmark: _Toc311196590]Change Management Process	Comment by Eva Redy: Identify the change management process to be used to identify, log, evaluate, and update the SRS to reflect changes in project scope and requirements. How are you going to control changes to the requirements. Can the customer just call up and ask for something new? Does your team have to reach consensus? How do changes to requirements get submitted to the team? Formally in writing, email or phone call?

As requirements change, the Client Interface will communicate these changes to the team, and a team decision will be made whether the requirements change will be sufficient enough to create new tools including but not limited to: a new SRS document, a new Application Architecture, new FMEA reports, a new design matrix, etc…. The Axiomatic Design Software tool Acclaro will help streamline this process.

Simple changes can effectively be considered using the Axiomatic Design Tool, with any residual effects observable from the streamlined creation of design views from the tool. Any changes to requirements should be formalized in a new SRS, and a team consensus should be sought before any changes are officially negotiated.

As objects of the project are elaborated, they will be preemptively validated with the Sponsor, allowing for low-overhead resolution of changes prior to development. A new Voice of Customer document should also be created for quality assurance and reference.

All documents will be created with an iterative version number, allowing for a paper trail of decisions. Prior documents will be maintained for this sake.	Comment by Eva Redy: Page break. This one remains in all cases, as does the one after Section 5. -MP

5. [bookmark: _Toc311196591]Document Approvals

	NAME
	DATE
	SIGNATURE

	

Matthew Rasler_____

Andrew Habegger___

Mark Parker_______

6. [bookmark: _Toc311196592]Supporting Information	Comment by Eva Redy: The supporting information makes the SRS easier to use. It includes:

Table of Contents
Index
Appendices
	Comment by Eva Redy: The Appendices are not always considered part of the actual requirements specification and are not always necessary. They may include:

	(a) Sample I/O formats, descriptions of cost analysis studies, results of user surveys
	(b) Supporting or background information that can help the readers of the SRS
	(c) A description of the problems to be solved by the software
 (d) Special packaging instructions for the code and the media to meet security, export, initial loading, or other requirements

When Appendices are included, the SRS should explicitly state whether or not the Appendices are to be considered part of the requirements.

[bookmark: _Toc311196593]6.1. Product Overview
The goal of this project is the creation of a system that automates the process of determining when and where a chicken egg flow problem (egg jam) occurs on a system of conveyors through the chicken egg packaging process. Mechanical units will be installed along separate conveyors to track the flow of eggs down that specific conveyor; these units will report to a software program designed to determine if the flow is normal or abnormal. In the case of abnormal flow, the system will alert the user in real-time as to which specific line the problem has occurred on. In a typical poultry operation, thousands of feet of conveyor lines would need to be searched manually to locate a jam. This system would minimize the searching, thus reducing the labor cost needed to fix the problem. The system also eliminates unnecessary loss in performance by alerting users even when the packaging system is not in use.

Rasler, Habegger, Parker (EARL Group)	Page 1 of 1 	 12/09/11f
image1.png

image2.png
Presentation Layer

e e s
Interface Vil plert 53
H
o
m— _

U Process Components

Configuraton

Settngs

Brdgeto
communication
drver

Hardware
Poling rocess

Ul bulldfupdate State Values

i

conmmesion
s =

s e [

L e—

= Bt

Mierocontroller v b
Femsor
P——— Hotto el
Orsres s

Software Requirements Specifications Document

Rasler, Habegger, Parker (EARL Group)

Page

1

of

1

12/09/11

f

CS360

Software Requireme

nts Specification (SRS) Document

The document in this file is an annotated outline for specifying software

requirements, adapted from the IEEE Guide to Software Requirements

Specifications (Std 830

-

1993).

Software Requirements Specifications Document Rasler, Habegger, Parker (EARL Group) Page 1 of 1 12/09/11 f CS360 Software Requireme nts Specification (SRS) Document The document in this file is an annotated outline for specifying software requirements, adapted from the IEEE Guide to Software Requirements Specifications (Std 830 - 1993).

