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Abstract 

Randomized path planning driven by a potential 
field is a well established technique for solving com- 
plex, many degrees of freedom motion planning 
problems 151. In this technique a suitable poten- 
tial field shapes the search of the path toward the 
goal. However, randomized path planning can be- 
come relatively inefficient when deep local minima 
are present in the potential field. Indeed, the algo- 
rithm usually spends most its running time trying to 
escape from local minima by means of uninformed 
random motions. In this paper we present simple 
yet effective heuristics for escaping local minima, 
with the goal of improving overall planning perfor- 
mance. We integrate these.heuristics into a path 
planner without sacrificing the overall probabilistic 
completeness of the algorithm. Experimental results 
on several test cases show a remarkable performance 
improvement, up to a factor of 4 for complex prob- 
lem instances. 

1 Introduction 

Probabilistic motion planning techniques are among 
the mainstream methods for solving complex plan- 
ning problems, possibly involving many degrees of 
freedom (d.o.f.'s) [5 ,  13, 19, 1, 161. These meth- 
ods have been shown to be probabilistically com- 
plete, i.e., they find a solution in bounded time with 
high probability if such a solution exists. Moreover; 
probabilistic motion planning algorithms have suc- 
cessfully dealt with large problem instances in such 
diverse domains as robot path planning in industrial 
workcells, design for maintainability of complex me- 
chanical systems, and digital actors [15, 9, 16, IS]. 

There are two major approaches toward prob- 
abilistic path planning [2]: potential field meth- 
ods, pioneered by the Random Path Planner (RPPJ 
algorithm [4, 51, and roadmap methods, initiated 
by the Probabilistic RoadMap (PRM) algorithm 
[19,13,14]. Potential field methods drive the search 
for a path in configuration space (C-space) with the 
help of a suitable heuristic function; they combine 
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gradient-based, goal-oriented motions with random 
walks to  escape local minima [5,S]. Road~nap meth- 
ods randomly sample collision-free configurations 
and connect them into a graph during a preprocess- 
ing phase; this graph is exploited as a roadmap to  ef- 
ficiently answer subsequent path queries [13, 19, 11. 

Currently, probabilistic roadmap methods are 
very popular. However, they suffer a major diffi- 
culty in dealing with narrow passages offering min- 
imal visibility between connected components of C- 
free [ l l ] .  Furthermore, the expensive preprocessing 
phase is only amortized if multiple planning queries 
are made in the same workspace. 

On the other hand, probabilistic potential field 
methods such as RPP  are often quite inefficient in 
dealing with local minima which unavoidably arise 
in the potential field. This inefficiency is mainly due 
to  the random walk performed to escape these lo- 
cal minima, which in turn is essential to guarantee 
probabilistic completeness [5 ] .  An additional prob- 
lem of pot,ential field methods is their difficulty in 
dealing with traps, i.e.: very deep local minima with 
narrow exit. 

On the positive side, potential field methods are 
well amenable to parallelization and require mini- 
mal tuning of parameters. In earlier research we 
have investigated parallel path planning in a poten- 
tiaLfield using a random competion approach [S, 61 
and exploiting learning techniques [7] across multi- 
ple queries. Both techniques help in reducing the 
impact of traps in the potential field thereby signif- 
icantly improving average planning performance. 

In this paper we aim to  increase the efficiency of 
potential field-based probabilistic planning by re- 
placing or supplementing the random walk with a 
more informed search, while preserving the prob- 
abilistic completeness property of the algorithm. 
This effort can be seen as dual to recent improve- 
ments to the basic PRM approach [l, 17, lo], where 
random sampling of configurations is biased to make 
it more effective. Alternative search strategies for 
escaping local minima are pursued a s  enhancements 
to  be integrated in a new path planning tool un- 
der development at the University of Parma. This 
tool will also include exploitation of p u t  experi- 
ence and support for concurrent computation [7]. 
In this paper, however, heuristic search techniques 
are investigated and evaluated in terms of improve- 
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ment over a sequential path planner. The combined 
effect of concurrent computation, learning, and im- 
proved heuristic search should make potential field 
planning a very competitive technique for complex, 
many d.0.f. problems. 

Section 2 
reviews in some detail RPP and its technique for 
escaping local minima. It also discusses the main 
sources of inefficiency and outlines directions for 
improvement. Section 3 describes alternative tech- 
niques for dealing with local minima which may he 
effective in certain cases. Section 4 reports exper- 
imental results from several problems assessing the 
relative effectiveness of the various techniques, both 
individually and in combination. A final section 
summarizes the contributions of the paper. 

2 Exit ing local min ima  in Random Path 

The RPP algorithm [5]  constructs a graph !whose 
nodes are the local minima of a potential function 
U ,  defined in the discretized configuration space of 
the robot. The potential function U is obtained 
from a potential attracting the robot toward the 
goal (placed in the global minimum of U )  and a 
repulsive potential around obstacles. 

Starting from the initial configuration qinit of 
the robot, the algorithm executes a gradient mo- 
tion, following the negated gradient of the potential 
U until it finds a local minimum qioe. If qloc is the 
global minimum qgoo, (i.e.> U = O), the algorithm 
terminates with success since a path has been found; 
otherwise the algorithm tries to escape from qlOc ex- 
ecuting a fairly comdex random motion uhase, to  

The paper is organized as follows. 

P l anne r  

been escaped, i.e., U(q) < U(ql,,) for the current 
configuration, or the maximum number of steps 
M A X  S T E P S  has been reached. The choice of 
MAX S T E P S  is critical for planning performance. 
Reaching a new local minimum can be hampered 
by a too Low value of M A X  S T E P S ,  whereas a too 
high value could yield long and expensive explo- 
ration of far C-space areas [SI. When a maximum 
number of random motions has been reached, the al- 
gorithm performs a random backtrack to a previous 
configuration of the path built so far. 

The random motion guarantees the probabilis- 
tic completeness of the planning algorithm a t  the 
price of an expensive exploration of the configura- 
tion space, due to the chaotic brownian search which 
often moves back to previously explored areas. As 
shown in [3], the number of steps required to escape 
from the attraction domain of a local minimum hy a 
random motion, t(qr), has a quadratic dependence 
on the average radius of the attraction basin R(q), 
i.e., t (q l )  = E [(“e))] , where hi is the step size 
along the i-th axis. 

When the local minimum has a large attraction 
basin, i.e. high E [(“e’)], and a t  the same time 
a large passage to  exit, this motion becomes inef- 
ficient. The random motion, indeed, must always 
execute a number of steps a t  least equal to  the 
square of the attraction radius in order to  depart 
enough from the minimum and thus have sufficient 
chances to  escape the local minimum. Hence, im- 
provements in the random search phase can signifi- 
cantly improve overall planning efficiency: especially 
in complex or many d.0.f. problems. 

2 

be de&ed hereafter. Once the region of attrac- 
tion of the local minimum has been successfully es- 3 Heuris t ic  techniques 
caped, the random motion is followed by a gradient 
motion that will find a (possibly new) local mini- 
mum. The algorithm therefore alternates gradient 
motions with random motion phases until the goal 
configuration is reached. When the planner finds a 
path between two local minima, it connects them 
with an edge in the graph. Hence, an incremental 
graph construction occurs until the goal configura- 
tion is found. Every edge p in the graph connecting 
two local minima is composed of an “up-hill’’ path 
p, ,  resulting from the random motion phase, and a 
“down-hill” path pd ,  resulting from the gradient mo- 
tion phase. Profiling data from RPP execution on a 
set of problems described in section 4 show that the 
time spent in the aggregated random motion phases 
is always more than three times the time required by 
the gradient motion phases. Moreover, t,he average 
time spent executing random motion with respect 
to  the total computation time increases from 43% 
for 7 d.0.f. problems to 75% for 11 d.0.f. problems. 

The random motion phase is carefully imple- 
mented in R P P  in order to ensure the probabilis- 
tic completeness. The algorithm executes up to a 
number of brownian motions from the local min- 
imum until the domain of attraction of qtoe has 

Consider being blind and trapped inside an un- 
known labyrinth. In this situation, a way to  search 
for an exit consists in executing random motions 
hoping to  find the exit. However, if the environ- 
ment is easier, such as if an exit from an unknown 
but standard room must, be found, a motion that 
follows a straight line in a randomly chosen direc- 
tion is likely to find an exit faster than a random 
motion. 

This is the rationale a t  the base of the approach 
presented in the following. Instead of executing 
complete but expensive random motions, incom- 
plete but fast motions are exploited in the “up-hill” 
movement to escape from easy local minima. 

Algorithm StrazghtLine (SL) simply selects a 
random direction from qioc in the n-dimensional 
C-space, and follows it until it reaches an obstacle 
or a configuration such that U(q) < U(qloc). In 
case a joint limit is reached, a new admissible ran- 
dom direction is chosen leading to a zig-zag path. 
With either terminating conditions, StraightLine is 
followed by a down motion which eventually leads to  
a local minimum. If the original local minimum or a 
minimum with higher potential is reached, the move 
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Figure 1: Escaping a local minimum with a straight 
line move 

is discarded and StraightLine tries a new random 
direction. Up to a maximum number of random di- 
rections from qio. are searched until the local min- 
imum is successfully escaped or the algorithm fails. 
In practice, a direct exit from the basin of attraction 
of the local minimum seldom occurs; rather, owing 
to the intricacies in C-space, the vast majority of 
successful StraightLine moves occur via “collision” 
with an obstacle. Such a situation is exemplified in 
Figure 1. 

The cost for an ”up-hill” motion using the SL 
algorithm highly depends on p :  probability to es- 
cape from a local minimum with a single straight 
line motion. Assuming that  is^ is the random 
variable for the number of straight line mot,ion at- 
tempts required to escape from a local minimum, 
then the probability to escape after I; straight line 
motion is P{&L = k }  = y(1 - p)”-’.  The av- 
erage cost of a single straight line motion is then 
R(qt) * C,, + E[C,,]: where C,, is the cost of a col- 
lision detection operation and E[C,,,] is the average 
cost of a down mot,ion. The average cost to  escape 
from the local minimum using SL is then: 

E[C(~us , ) l=  E { X s L H R ( q i )  * Cm + EICmI) 

The StraightLine heuristic turns out to  he effec- 
tive in many “easy” local minima, with high value 
of p and low E{&I,}, that are dealt with quite 
inefficiently by brownian search. These “easy” lo- 
cal minima are likely to  occur rather frequently in 
many planning problems. For difficult local minima, 
however, SL is likely to be marc expensive than a 
random motion. When the probability p decreases, 
possibly reaching zero, the value of E[C(p,,,)] can 
indeed he higher than E[C(p,,)]. 

For high-dimensional C-space, it would be im- 
possible to make a “a priori” classification of minima 
in “easy” and “difficult” ones, because the computa- 
tion of U must he limited to reached configurations. 
A precomputation of U would he intractable so the 
precomputation is limited to the workspace poten- 
tials of control points. Nevertheless, the planner can 
learn the difficulty of the local minima through the 
exploration of the attraction basin. 

Statistical data collected on five problems dis- 
cussed in Section 4 illustrate the behavior of SL in 
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prob. 1-10 11-50 51-300 301-2k >2k 
1 95.9% 4.1% 0% 0% 0% 
2 71.4% 12.8% 8.3% 6.3% 1.2% 
3 68.8% 17.8% 7.8% 2.8% 2.8% 
4 73.9% 10.4% 1.2% 2.4% 12.1% 
5 57.7% 21.9% 8.0% 3.4% 9.0% 

Table 1: Number of random directions required to  
escape from the local minima using SL in five dif- 
ferent problems. (Each problem solved 100 t,imes). 

exiting from local minima. As shown by table 1, t,he 
SL method is often effective in its initial att,empts, 
involving a limited number of random directions. 
When many directions are unsuccessfully explored, 
the minimum is likely to he very difficult or even 
impossible to escape using SL. 

Hence, StraightLine has been modified in a new 
algorithm, SL’, which limits t,he number of “up-hill” 
motions using StraightLine to  C S L ;  empirically set as 
200 based on values from Table 1. The planner, once 
reached the limit c s ~ ,  autonomously classifies the 
problem as “difficult” for the StraightLine heuris- 
tic. Hence, it reverts to random motion, thereby 
guaranteeing also the probabilistic completeness of 
the planning algorithm. 

StraightLineSelect (SLS) is also a modified up- 
hill motion heuristic. SLS tries to  further optimize 
the basic idea by early pruning non-promising can- 
didate directions. During each StraightLzneSelect 
move the potential U(q) along the straight line or 
the zig-zag path is tracked by a simple state ma- 
chine. If along the chosen direction the potential 
increases monotonically, with high chance the en- 
suing down motion would bring to the same local 
minimum. These directions are thus discarded with- 
out actually performing the down motion. More 
promising directions are those where U(q) exhibits 
a non-monotone behavior - a clue for a valley in 
the potential driving to  a new local minimum (Fig- 
ure 2). Only these promising random directions are 
thus actually followed by the down motion search in 
StraightLineSelect. 

As already done with SL, we empirically define 
a value, CSLS, based on the data in Table 2 to make 
a dist,inction between “easy” and “difficult” ‘proh- 
lems. Tables 1 and 2 show that more directions are 
generally required by SLS to escape the local min- 
ima. The higher number of SLS attempts, however, 
usually does not imply a longer execution time. The 
average cost to escape from a local minimum with 
the SLS method is: 

E[C(~us,s)l= E{xsLs)(R(qI)  * C c = )  + E(XSLSIEICP~I~, 
where q is the probability that the SLS motion 

crosses a potential valley. When q is small the cost 
of n SLS escape motions is much lower than the 
cost of n SL attempts, since down motions requir- 
ing costly collision detection operations are avoided. 
The variation in the SLS heuristics labeled SLS’ re- 
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Figure 2: Potential value along a random straight 
line in the SLS heuristic: (a) 2D workspace; (h) 
potential function; (c) monotone and non-monotone 
potential distributions along two directions. 

prob. 1-10 11-50 .51-300 301-2k >2k 
1 68.8% 27.4% 3.8% 0% 0% 
2 34.7% 27.5% 17.8% 13.3% 6.7% 
3 14.6% 23.0% 28.3% 14.0% 20.1% 
4 27.7% 21.3% 22.1% 12.6% 16.3% 
5 9.1% 17.9% 29.5% 26.5% 17.0% 

Table 2: Number of random directions required 
t.0 escape from the local minima arising in the 
five problems using SLS. (Each problem solved 100 
times). 

verts to  brownian motion after 500 random direc- 
tions attempted. 

A further variation of StraightLineSelect, labeled 
SLS" has also been developed. SLS and SLS' he- 
have rather irregularly across the problems exam- 
ined: for some problems, largely increasing the num- 
ber of explored directions improves planning perfor- 
mance; whereas for other problems the increase is 
detrimental. In order to  let the planner adapt to  
the difficulty of the local minimum, the SLS' algo- 
rithm reverts to brownian motion when either it has 
already evaluated C S L S  = 500 random directions or 
it has fully explored 10 promising directions with 
the down motion as well. 

1 

t I 

Figure 3: Set of four path planning probk :ms. 
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problem BR SL’ SLS’ SLS” 
1 avg 6.64 2.22 8.17 2.69 

std 5.00 0.31 7.17 1.66 
2 avg 4.31 6.11 3.95 3.90 

std 2.68 3.62 1.83 1.54 
3 avg 6.88 4.07 9.70 6.41 

std 4.40 3.13 7.58 5.72 
4 avc 28.47 9.74 28.24 4.85 ~~ 

stdY 24.23 12.40 26.19 4.96 

Table 3: Planning results for 7 d.0.f. problems in 
Figure 3. (Times in seconds; 100 independent solu- 
tions per problem). 

4 Experimental results 

We have evaluated the StraightLane and StrazghtLi- 
neSelect, along with the brownian motion in R P P  
(labeled as BR. in the following tables), on the four 
problems shown in Figure 3, all referring to  a 2 link, 
7 d.0.f. robot. The choice of these planning prob- 
lems as testbed for our algorithms has been moti- 
vated by the classification of workspaces proposed 
by Hwang and Ahuja in [U]. The first workspace 
belongs to  the set of easy problems, first class in 
Hwang and Ahuja’s classification. The space among 
obstacles is large compared to  robot dimensions and 
no narrow passage is present. The second and third 
problems are in the second class, i.e. medium lewl 
difficulty problems. The planner must, be able to 
find a path for the robot when its movements are 
restricted in a narrow space among close obstacles. 
The fourth problem helongs to the last and most 
difficult class in the classification. The robot is re- 
quired to enter a narrow slot, where the goal is lo- 
cated. If the entering orientation is incorrect, the 
robot might be forced to exit, the slot in order to  re- 
orient itself, a situatiou likely involving a very deep 
local minimum in U .  Additional problems investi- 
gated involve a 9 d.0.f.. and an 11 d.0.f. robots in 
an eurironment similar to problem 2. In these prob- 
lems the difficulty stems from the increased number 
of d.o.f.’s of the robot. -411 performance results re- 
ported in the following have been obtained with a 
450 MHz Pentium-I1 P C  with 256 MB main mem- 
ory, under the Linux operat,ing system. 

Table 3 reports average and standard deviation 
of the planning times achieved by the modified 
heuristics for the four problems in Figure 3 (all 
involving a 7 d.0.f. robot). Percentages of solved 
problems are not reported, since all modified heuris- 
tics are (of course) always successful. Table 4 re- 
ports summary data obtained in the solution of ten 
9 d.0.f. problems (randomly chosen goals for a 3 
link, 9 d.0.f. robot in the workspace of Problem 2) 
and ten 11 d.0.f. problems (randomly chosen goals 
for a 3 link, 11 d.o.f. robot in the workspace of 
Problem 2). Table 4 reports average time and stan- 
dard deviation obtained in solving the 9 d.0.f. and 
the 11 d.0.f. makespans with the wrious heuristics 

makespan  BR SL’ SLS’ SLS” 
9 d.0.f. avg 286.15 102.89 105.37 65.97 

std 91.56 24.09 36.56 13.79 
11 d.0.f. avg 389.84 99.71 180.66 105.16 

std 146.79 31.06 71.22 38.24 

Table 4: Planning results for makespans of 9 d.0.f. 
and 11 d.0.f. problems. (Times iu seconds; 20 inde- 
pendent solutions per makespan). 

(each prohlem is solved 20 times). All problems 
are reliably solved by the heuristics in 100% of the 
cases. Figures 4 and 5 detail the average planning 
time achieved by the heuristics on the individual 9 
d.0.f. and 11 d.0.f. problems. Tables 3 and 4 show 
remarkable improvements attained by the modified 
SL’ and SLS” heuristics over the standard RPP (up 
to a factor 4 for the makespans of 9 d.0.f. and 11 
d.0.f. problems). The improvement is larger for the 
more difficult problems, where RPP random search 
indeed requires an increased fraction of time. 

Figure 4: Average planning time for the set of 9 
d.0.f. prohlems. (Times in seconds; 20 independent 
solutions per problem). 

Figure 5: Average planning time for the set of 11 
d.0.f. problems. (Times in seconds; 20 independent 
solutions per problem). 

-4s far as the relative merit of the two SL’ and 
SLS” heuristics is concerned, no decisive advantage 
can be seen for either method. Their relative ef- 
fectiveness seems to depend on the problem, thus 
implying that the specific U profile tracked by SLS 
is not always the only key to  escape the local mini- 
mum. 
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5 Conclusions 

We have described simple yet effective heuristics for 
improving potential field-based path planning per- 
formance. Two heuristics, labeled SL’ and SLS”, 
have been shown to yield remarkable performance 
benefits for complex prohlems. 

In future work we plan to  integrate these heuris- 
tics in a parallel path planner under development 
at the University of Parma and let them operate 
concurrently. 
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