





# **Concepts for the design and application of particle precipitators for residential biomass combustion**

Dr. Fredrik Niklasson SP Technical Research Institute of Sweden

ERA-NET Bioenergy International Workshop Technologies for clean biomass combustion 20<sup>th</sup> September 2012, Graz, Austria



### Contents

### Objectives

### ESP background and mechanisms

- Basic definitions of an ESP
- Efficiency
- Large scale example
- Examples of residential ESPs
- Design criteria
- Performance testing
- Conclusions



# Objectives

Residential firing of biomass is a major source of PM<sub>2.5</sub> in ambient air

- Other sources are traffic and industry
- PM<sub>2.5</sub> constitutes a potential health risk

Particle emissions from residential firing can be limited by

- 1. Favourable combustion conditions (modern technologies)
- 2. Flue gas cleaning devices

There are several flue gas precipitator devices under development, some already on market

- Mostly Electro Static Precipitators (ESPs)
- This work summarizes experiences from residential ESPs tested within the Future BioTec project group



# **Basic definitions of an ESP**

### The main parts of an ESP are:

### Discharge electrodes

charge the particles in the ESP

### Collecting electrodes

Attract and collects charged particles

### High-voltage power supply







# Efficiency

- To meet future emission requirements the collecting efficiency of an ESP should be at least 75 % during normal operation
- Under ideal conditions (turbulent flow, perfect mixing and immediate charging), the collecting efficiency is determined by:

$$\eta = 1 - e^{-De}$$

in which *De* is the Deutsch number:

$$De = \omega \frac{A}{Q}$$



# Large scale example

## Large-scale ESPs

#### Used in industrial processes for decades

#### •Large gas volumes:

- Large cross-section (gas velocity)
- Parallel plate design
- Typical voltage 50-80 kV

### Individually controlled systems

### Rapping of electrodes

Dust collected in hoppers

High collecting efficiency possible

Robust design, low pressure drop





# **Residential ESP compared to industrial units**

A precipitator for residential use differs from traditional industrial designs:

- Lesser gas volumes
- Smaller units, usually of cylindrical design
- Non professional users
- User friendly control interface
- Robust
- Safety
- Residential installation
- Size and design an issue
- Cost
- Noise





# **Residential ESP examples - Rooftop**

## Two examples of rooftop designs





- Space for installation
- Cooler flue gas
- Inspection
- Weather conditions

RuFF-Kat (Germany)

ResidentialESP/APP (Norway)





# **Residential ESP examples - Indoors**

### **Combustion devices**

- Stove
  - In living space
- Boiler
  - Separate room

### **ESP** location

- Next to boiler/stove
- In chimney/gas duct

#### **Considerations**

- Limited space
- Maintenance
- Noise
- Design (appearance)



SF20/Spanner (Germany)



Airbox/Spartherm (Switzerland)



#### Installation

- Correct installation crucial for the function
- Should be performed by a professional
- · Well written installation manual should be available

#### Pressure drop

• Low pressure drop important, especially for natural draft systems

1

#### Control system

- For automated boilers/stoves an interface between boiler and ESP control systems can manage start and stop procedures
- Otherwise, a temperature sensor may be used
- Operation of cleaning system for electrodes



2

High voltage and electrodes

#### ■Power supply (in range of 15- 30 kV)

■Thin discharge electrodes, preferably with sharp surfaces, to achieve high charging efficiency (corona)

#### Some observed causes for frequent sparkovers:

- Too flexible electrodes (vibrates during operation)
- Poorly aligned electrodes
- ESP below moisture dew point (condensation)
- Ash deposits and condensation of tars on insulators





### Maintenance and availability

#### **Available a whole heating season without maintenance**

- Except cleaning by chimney sweeper, if required
- Availability ensured by robust and well-proven technical solutions

#### ■Simple, safe and quick access for cleaning and inspection

Influence on ESP operation from condensable and sticky particles formed under poor combustion conditions (for example during start up)?

Internal logging of ESP operation?





### Applicability of ESP for different combustion devices specified

- Old systems (perhaps high amounts of tars and soot)
- Stoves
- Boilers

#### Cleaning, the dust collected have to be removed

- Automatic cleaning system (vibration, brush or water spray)
- Manual cleaning by chimney sweeper or user

### Safety

- Closed system (prevent leakage indoors)
- High voltage
- Fire safety
- Safety instructions



# **Quality assurance**

#### ESP function verified by independent testing laboratory

- Efficiency
- Availability

#### No test-standard yet available for residential ESP:s

#### General aspects regarding measurements at ESP units:

- Losses of charged particles in sampling lines not fully understood
- Hard to determine collecting efficiency of rooftop filters in the field
- Considerations at test stand tests, some examples:
  - Position of ESP comparable to foreseen installation
  - Flue gas temperature comparable to field conditions
  - Simultaneous dust measurements before and after filter recommended
  - Preferably, tests are performed after filter been in use



# **Performance testing**

### **Two different evaluation criteria:**

- The collecting efficiency of the ESP
  - ✓ Calculated from PM concentrations at ESP inlet and outlet
  - $\checkmark$  This criterion is of interest from a technical viewpoint
- PM emission in the flue gas at ESP outlet
  - ✓ Measured in diluted flue gas (diluted to below 50°C)
  - PM will include condensable organic compounds that still are in gas phase at the ESP outlet
  - This provides a more relevant value from an environmental viewpoint
- A standard test method is being elaborated in Germany (VDI Guideline 33999)



# Conclusions

- Electrostatic precipitation (ESP) of fly ash is a well-established technique for flue gas cleaning in industrial processes.
- Smaller EPS:s, to suit residential furnaces, are under development.
- In order to become widely used, such ESPs have to meet some criteria regarding efficiency, cost, and availability. Furthermore, aspects of safety, noise and convenient installation have to be considered.
- There is a lack of commonly accepted methods for testing the efficiency of residential ESPs. The set-up and sampling methods used may considerably affect the test results. Thus, caution should be applied when comparing results from ESPs tested under different conditions.







# Thank you for your attention

# **Dr. Fredrik Niklasson**



SP Sveriges Tekniska Forskningsinstitut SP Technical Research Institute of Sweden Energiteknik / Energy Technology Box 857, SE-501 15 Borås, Sweden Tel: +46 (0)10 516 50 00, (direct) +46 (0)10 516 53 94 Telefax: +46 33 13 19 79 E-post: <u>fredrik.niklasson@sp.se</u> Internet: <u>www.sp.se</u>