Open Questions

To assess student's knowledge, identify misconceptions and inform future teaching the following probing, open ended questions can be used. Students can display their results using mini-whiteboards to gain instant feedback.

- Give an example of a logarithm that simplifies to 3 (or 4 or 2 or -2)
- Give an example of two logarithms that add together to make $\log_a 36$ (24 or)
- Give an example of two logarithms that make $\log_a 5$ when subtracted (or 6)
- Explain why log 4 + log 9 = 36.
- Give possible numbers for the blanks

•
$$\log_{\square}\Box + \log_{\square}\Box = \log_{\square}\Box$$

- Explain why $y = -\log x$ is the same graph as $y = \log \frac{1}{x}$
- Explain why the graph of $y = \log 2x$ is a translation, in the direction of the y axis, of the graph $y = \log x$.
- Explain why the graph of $y = \log x^2$ is a stretch in the direction of the y axis of the graph of $y = \log x$.
- Explain why the graph of $y = \log x$ passes through the point (1, 0).
- Explain why the y-intercept on the graph of $y = \log(x+10)$ is equal to 1.