

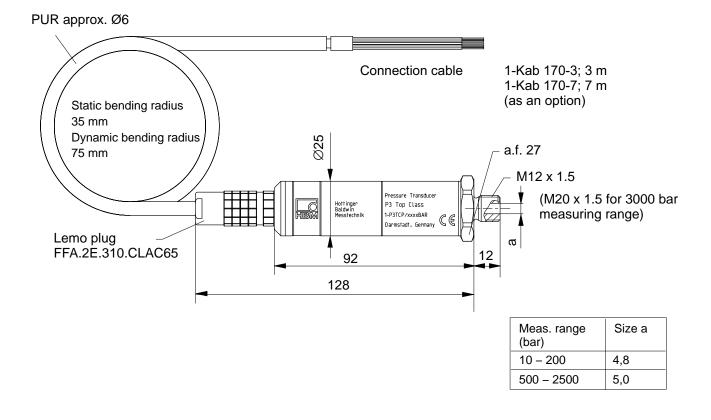
P3 Top Class

P3MB version with fixed cable

P3MBP version with plug connection

P3

Absolute pressure transducer Nominal (rated) pressure 10 bar to 3,000 bar


Special features

- For static and dynamic pressure variance, pressure peaks and pressure fluctuations
- Principle of measurement: foil strain gage

Top Class

- Better temperature response
- Individually documented values
- Improved accuracy class
- Closer sensitivity tolerance (suitable for parallel connection, for differential pressure measurement, for example)
- PT100 for temperature compensation in four-wire circuit
- Electronic data sheet (TEDS) is integrated

Dimensions (in mm; 1 mm = 0.03937 inches) for P3 Top Class

Specifications for P3, P3MB and P3MBP per DIN 16086

Туре				P	3, P3N	/B. P3	MBP			
Mechanical input quantities										
Pressure type				á	absolu	te pres	sure			
Principle of measurement					foil st	rain ga	age			
Measuring range, 0 bar	bar	10	20	50	100	200	500	1000	2000	3000
Accuracy class ¹⁾		0.2	0.15	0.2	0.	15	(0.1	0	.2
Output characteristics										
Nominal (rated) sensitivity	mV/V				2					1.5
Sensitivity tolerance	%	0.25		0.2				0.15		
Effect of temperature on zero signal in the nominal (rated) excitation voltage range per 10 K, rel. to nominal (rated) sensitivity										
in the nominal (rated) temperature range	%				:	±0.1				
in the operating temperature range	%				E	0.15				
Effect of temperature on sensitivity in the nominal (rated) excitation voltage range per 10 K, rel. to actual value										
in the nominal (rated) temperature range	%				:	±0.1				
in the operating temperature range	%				:	±0.2				
Characteristic curve deviation (setting of initial point)	%	± 0.20	± 0.15	±0.2	±Ο).15	±	0.10	±	0.2
Repeatability per DIN 1319	%				÷	0.05				

 Accuracy class is not a DIN 16086 concept. The figure conforms to the maximum single deviation; that is the characteristic curve deviation (setting of initial point) and deviations as a result of temperature, related to a difference of 10 K.

	Test report P3MB, P3MBP
	Prüfprotokoll tet carticate' protockoll
	Type: Insering: P3 Auffrag: order of commance 801103344 Meannessbereich: 500 bar Pulfer examer of combane Gebel Medrell: 121910237 Datam: bed date force of exame 2010-09-30 Profespeninger: Instrument mathematics Instrument mathematics 2010-09-30 Profespeninger: Instrument mathematics Instrument mathematics Instrument mathematics
Information on the linearity of the individual transducer	 Engangagodie des Messbereichs (%) Ausgangagodie (m/V/) add austr/, results 0 0.0000 50 0.9992 100 1.9980 0 0.0001
Information on the sensitivity, characteristic curve deviation and rel. reversibility error of the individual transducer.	Aus den Pröfergebnissen berechnete und sonstige messtechnische Eigenschaften : heinigen die seiner Bestechnete und eine Termanneng und als ein der Bestechnete der Statister Bestechnete auf der Bestechnete der Bestechnete Kennenert [ImiNV] 1.9980 Kennenert [ImiNV] ummenster I ummenster Kennenert [ImiNV] 0.036 Kennenert [ImiNV] ummenster I ummenster 0.045
	Alignmenics Zusstzinformationene: per detaute internationenenenen per per detaute internationenenenenenenenenenenenenenenenenenene

Specifications P3 Top Class per DIN 16086

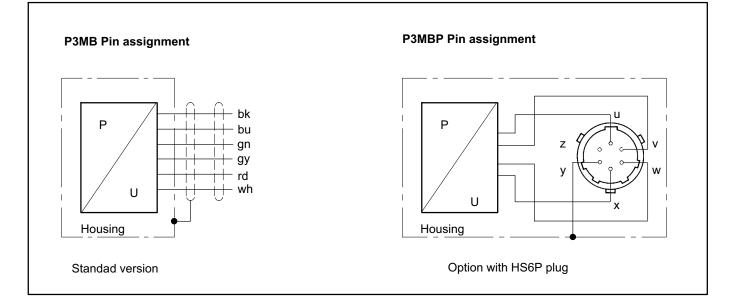
Type P3 Top Class			
Mechanical input quantities			
Pressure type	absolute pressure		
Principle of measurement	foil strain gage		

Measuring range, 0 bar	bar	10	20	50	100	200	500	750	1000	2000 2500	3000
Accuracy class ¹⁾			0.15	0.15	0.13				0.1		
Output characteristics											
Nominal (rated) sensitivity	mV/V				2	2 ± 0.15	5%				1.5 ±0.15%
Sensitivity tolerance	%	0.2		0.15					0.10		
Zero signal tolerance	%						± 1				
Creep upon unloading 15 min.	%	0.2	0.	15	0.05				0.03		
Effect of temperature on zero signal in the nominal (rated) excitation voltage range per 10 K, rel. to nominal (rated) sensitivity											
in the nominal (rated) temperature range	%						± 0.05				
in the operating temperature range	%						±0.10				
Effect of temperature on sensitivity in the nominal (rated) excitation voltage range per 10 K, rel. to actual value											
in the nominal (rated) temperature range over 0 $^{\rm o}{\rm C}$	%						±0.05				
in the nominal (rated) temperature range below 0 °C	%						±0.1				
in the operating temperature range	%						± 0.2				
Characteristic curve deviation (setting of initial point)	%	0.20	0.15	0.15	0.13				0.10		
Rel. interpolation error (max. deviation) of a cubic interpolation function over the test series	%	0.10	0.08					0.05			
Long-term stability of zero signal and span (data per year)	%			0.4					0.20	0	
Repeatability per DIN 1319	%						±0.05				

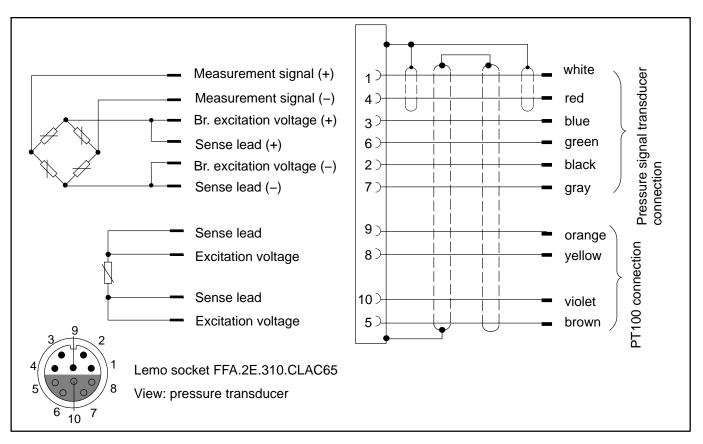
¹⁾ Accuracy class is not a DIN 16086 concept. The figure conforms to the maximum single deviation; that is the characteristic curve deviation (setting of initial point) and deviations as a result of temperature, related to a difference of 10 K.

Extended test report

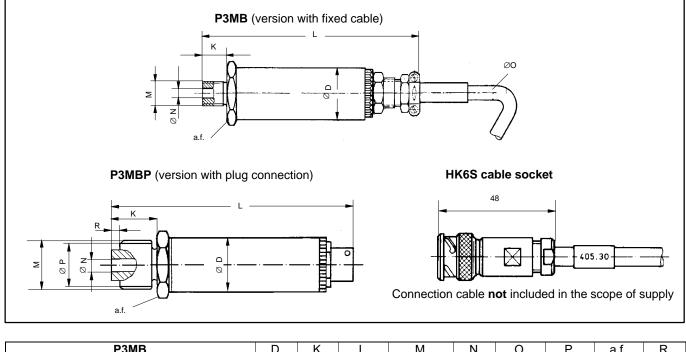
Page 1	Test report P3 Top Class	Page 2
Hottinger Baldwin Messtechnik Gradit Ling In Tele Size 4	Information on the linearity of the individual transducer	Notinger Bildvein Messtechnik Genöft Jeffelsen In Televis Ser 43 Octobal Controllation Jeffelsen Messtechnik Genöft Jeffelsen versiter and Bild Net Messtechnik Ser Bild Net Messtechnit Ser Bild Net Messtechnik Ser Bild Net Messtechnik S
terio enfotese protocole d'esse: Typ: preview P3-TC este est encomman N Messbeercichi bazi: 2500 Ppfer megnotrise Merchennent, 3-ungangespanne in mVV merchannent, 3-ungangespanne in mVV	Information on the sensitivity, characteristic curve deviation and rel. reversibility error of the individual transducer.	tere entrollar i protoco e rese <u>Hornini</u> 121410243 Datum: but deer rice (r - tra ate) 23.07.2008 Prifung dor Temperaturkompensation but deer rise e travait Prifung bottemperaturkompensation but deer rise e travait Britographises Engangegoode its mich reset travait e travaite e travait e travait Engangegoode its mich reset travait e travaite e travait e travait Engangegoode its mich reset travaite e travaite e travaite e travaite e travaite travaite e travaite e travaite e travaite e travaite Britographic e travaite e travaite travaite e travaite e travaite e travaite Britographic e travaite e travaite e travaite e travaite Britographic e travaite Britogra
np-fumily factor ratio add utility instant 0 stopping factor ratio 0 0,000 000 0,000 1000 0,000 1000 0,000 1000 0,000 1000 0,000 1000 0,000 1000 0,000 1000 0,000 1000 0,000 1000 0,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 2000 1,000 <t< td=""><td>Information on the max. interpolation error as a % and the coefficient of the</td><td>70 0.0004 Eingangagebe Temperatur in "C" Ausgangagebe in thinking and the method in the Walk in a constraint of an thinking and the method in the Walk in a constraint of an thinking and the method in the Walk in a constraint of an thinking and the method in the Walk in a constraint of an thinking and the method in the Walk in a constraint of an thinking and the method in the Walk in the Wal</td></t<>	Information on the max. interpolation error as a % and the coefficient of the	70 0.0004 Eingangagebe Temperatur in "C" Ausgangagebe in thinking and the method in the Walk in a constraint of an thinking and the method in the Walk in a constraint of an thinking and the method in the Walk in a constraint of an thinking and the method in the Walk in a constraint of an thinking and the method in the Walk in a constraint of an thinking and the method in the Walk in the Wal
Konwert, Ausgangsspanne C in m/V 1992 Bennkn, Johne Kanadam enge han sakat Kanada Jakat Kanada Kanada Kanada Kanada Relative Hystense in NuC 0.025 sector systems Tynesen and	cubic compensation function in the form $X = R \cdot Y^3 + S \cdot Y^2 + T \cdot Y$ of the individual transducer	Temperaturkoefficient des Nulliginalis, bezogen auf den -0.0300 -0.0300 Nerrekanneuer in NUTOK -0.0300 Temperaturkoefficient des august conflicient de targetinture du signal série -0.0300 Temperaturkoefficient de Augustragespanne, bezogen auf den 0.0103 -0.0300 Kenneuer in NUTOK -0.0300
Maximale Interpolationabare/shring in %vC -0.013 Maximum Advances on even kulador tempolation should be same Markenshini -0.013 Maximum Advances on even kulador tempolation brance Based and tempolation tempolation brance tempolation brances and tempolation tempolation brance tempolation brances and tempolation tempolation brance tempolation brances and tempolation tempolation brances and tempolation constrained and tempolation tempolation tempolation tempolation brances and tempolation tempolation tempolation tempolation brances and tempolation tempolation tempolation tempolation advancements 0.373353 X = R Y * 13 = Y Y * 1 Y Y W I W I W X I B Bag descenterings Y 104007	Information on the temperature dependency of the individual transducer	Alle alle den Bessergehrinsen einerheiden Kongrefallen einigen gehan den Toperfahlsteren einerheiten. An eine hen einigen ein
Aligenceirs Zuratzinformationen: Aligenceirs Zuratzinformationen: An enter researcherster Egeneratede las Antonies en dirich "grandugen et la decisi Postalaudi se Quittessers apacoset and an enter antonies of la sensi an en antonies en la sensi antonies en la decisi Postalaudi se Quittessers apacoset Angebe 1998 Version b Kestintis T Santo Postalaudi Version b Kestintis T Santo Postalaudi August Au	coefficient of the zero signal and on the temperature coefficient of the output span of the individual transducer.	Aligamelies Zurastzinformationen: presentational international internat


The following data applies to P3 and P3 Top Class

Mechanical input quantities										
Measuring range, 0 bar	bar	10	20	50	100	200	500 750	1000	2000 2500	3000
Initial value	bar					0				
Operating range at reference temperature	%		C	200					0150	
Overload limit at reference temperature	%			250					200	
Test pressure	%			250				200		150
Dynamic loading										
Permissible pressure	%					100				
Permissible oscillation width to achieve a typical 10,000,000 DIN 50100 load cycles	%					70				
Dead volume	mm ³	2	500		2000			800		900
Control volume	mm ³	9		7					1.5	
Output characteristics										
Fundamental resonance frequency	kHz	13	15	26	38	67			100	
Input resistance at reference temperature	Ω					350 ±5	i			
Output resistance at reference temperature	Ω					350 ±5	i			
Insulation resistance	MΩ					5000				
Electrical strength	V					90				
Excitation voltage										
Reference excitation voltage	V					5				
Nominal (rated) excitation voltage	V					0.5 7	.5			
Operating range	V					0.5 1	2			
Ambient conditions										
Permissible voltage between measuring circuit and transducer ground at reference temperature	v					50				
Materials for parts which come into contact with the environment			1	.4301; 1.4 chrome				1.6354 F ed brass		
Reference temperature	°C					23				
Nominal (rated) temperature range	°C				-	10 +8	30			
Limiting temperature range	°C				-4	40 +1	00			
Storage temperature range	°C				-4	40 +1	00			
Impact resistance (tested to DIN 40046)										
Impact acceleration	m/s ²					1000				
Impact duration	ms					4				
Impact form	-				На	If sine w	/ave			
Acceleration sensitivity per 10 m/s2 for exciting frequencies of 20% of the natural frequency	%					<±0.00	1			
Mechanical specifications	1	1								
Pressure connection					M12 x	1.5				M20 x 1.5
Electrical connection		Lemo c	onnector E	RA.2E.3	10.SSL	or a fixe	d 3 m d	able or a	an HS6P	device plug
Bending radius of the connection cable, min.										
static	mm					35				
dynamic	mm					75				
Mounting position						any				
Weight without cable approx.	g				а	pprox. 2	200			
Degree of protection (per DIN 40050, IEC 529)						IP67				


Economical, standard versions available from stock:

Measuring range, 0 bar to		Product number	
	P3 Top Class Lemo FFA 2E.310	P3MB cable connection 3 m cable, free ends	P3MBP with HS6P plug connection
10 bar	1-P3TCP/10BAR	1-P3MB/10BAR	1-P3MBP/10BAR
20 bar	1-P3TCP/20BAR	1-P3MB/20BAR	1-P3MBP/20BAR
50 bar	1-P3TCP/50BAR	1-P3MB/50BAR	1-P3MBP/50BAR
100 bar	1-P3TCP/100BAR	1-P3MB/100BAR	1-P3MBP/100BAR
200 bar	1-P3TCP/200BAR	1-P3MB/200BAR	1-P3MBP/200BAR
500 bar	1-P3TCP/500BAR	1-P3MB/500BAR	1-P3MBP/500BAR
750 bar	1-P3TCP/750BAR	-	-
1 000 bar	1-P3TCP/1000BAR	1-P3MB/1000BAR	1-P3MBP/1000BAR
2 000 bar	1-P3TCP/2000BAR	1-P3MB/2000BAR	1-P3MBP/2000BAR
2 500 bar	1-P3TCP/2500BAR	-	-
3 000 bar	1-P3TCP/3000BAR	1-P3MB/3000BAR	1-P3MBP/3000BAR


Pin assignment P3MB and P3MBP

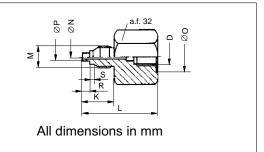
Pin assignment P3 Top Class

Dimensions for P3MB and P3MBP versions (P3 Top Class see first page)

P3MB		D	K	L	М	Ν	0	Р	a.f.	R
with apple connection	10 bar2000 bar	25	12	112	M12 x 1.5	5	6.5	-	27	-
with cable connection	3000 bar	25	20	129	M20 x 1.5	5	6.5	17.5	27	3
	10 bar2000 bar	25	12	97	M12 x 1.5	5	-	-	27	-
with plug connection	3000 bar	25	20	105	M20 x 1.5	5	-	17.5	27	3

Accessories

Included in scope of supply


1 USIT ring U12.7 x 20 x 1.5 for P3MB..../ 10 bar to 500 bar 1 double-cone seal, 1.4305, for P3MB / 500 bar ... 3000 bar;

Bag with 2 x conical seals made of material 1.4305

To be ordered separately

Connecting branches for measuring ranges to 500 bar Material: stainless steel 1.4305

Туре	D	Κ	L	М	Ν	0	Ρ	R	S
P3M/500/M20	M12 x1.5	25	50	M20 x 1.5	4	20.2	5	5	3
P3M/500/R1/2	M12 x 1.5	20	50	G1/2	4	20.2	5	5	3

Connection cable P3TCP 1-Kab170-3 or 1-Kab170-7; Connection cable 1-KAB405.30A-3 (for variants with HS6P plug, to be ordered separately); Connection cables 1-Kab170-3 or 1-Kab170-7 must be ordered separately.

HK6S cable socket, Order no. 3-3312.0095

Cable plug for Greenline Order no. 1-MS3106PEMV

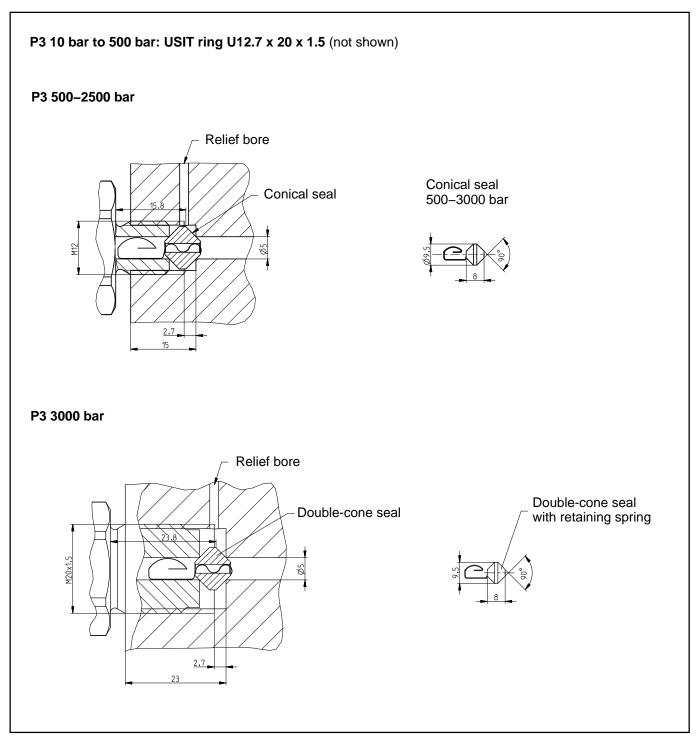
15-pin D-Sub plug, Order no. 2-9278.0321

Seal accessories

10 to 200 bar	3-4218.0002	U seal/USIT ring U12.7 x 20 x 1.5, max. 500 bar
500 bar	3-4218.0002	U seal/USIT ring U12.7 x 20 x 1.5, max. 500 bar
	2-9278.0376	bag, conical seal P3MB/500-3000 bar
1000 to 3000 bar	2-9278.0376	bag, conical seal P3MB/500-3000 bar

Options for K-P3 Absolute pressure transducer

Order No. K-P3


° 3									
	Code	Option	1: Desig	n					
	MB	MB - C	B - Classic, with cable connection [not with option 3 = P]						
	MBP	MPB -	Classic,	with plug H6SP	[only with option 3 = P]				
		Code	Option	2: Measuring range					
		010B	10 bar						
		020B	20 bar						
		050B	50 bar						
		100B	100 ba	r					
		200B	200 ba	r					
		500B	500 ba	ſ					
		01KB	1000 b	ar					
		02KB	2000 b	ar					
		03KB	3000 ba	ar					
			Code	Option 3: Electrical connection					
			К	Connection cable, 3 m, unterminated	[only with option 1 = MB]				
			Y	Connection cable, 20 m, unterminated	[only with option 1 = MB]				
			М	Connection cable, 3 m, connector MS	[only with option 1 = MB]				
			Ν	Connection cable, 20 m, connector MS	[only with option 1 = MB]				
			D	Connection cable, 3 m, connector D15	[only with option 1 = MB]				
			F	Connection cable, 20 m, connector D15	[only with option 1 = MB]				
			Q	Connection cable, 3 m, connector D-Sub-HD	[only with option 1 = MB]				
			R	Connection cable, 20 m, connector D-Sub-HD	[only with option 1 = MB]				
			P	mit Stecker HS6P, welded	[only with option 1 = MBP]				
				Code Option 4: Transducer Identification					
				S Without Transducer Identification (TEDS)					
				T With Transducer Identification (TEDS)	[only with option 3 = K, Y, P]				
K-P3	-								

Code	Option 1: Design
MB	P3MB "Classic" (connection cable, 3 m); not with option 3 = P/C
MBP	P3MB "Classic" (connection cable, 3 m); only with option 3 = P/C

Code	Option 2: Measuring range
010B	10 bar
020B	20 bar
050B	50 bar
100B	100 bar
200B	200 bar
500B	500 bar
01KB	1000 bar
02KB	2000 bar
03KB	3000 bar

Code	Option 3: Electrical connection		
К	Connection cable, 3 m, free ends	(only with option 1 = MB)	
Y	Connection cable, 20 m, free ends	(only with option 1 = MB)	
М	Connection cable, 3 m, MS plug	(only with option 1 = MB)	
Ν	Connection cable, 20 m, MS plug	(only with option 1 = MB)	
D	Connection cable, 3 m, D15 plug	(only with option 1 = MB)	
F	Connection cable, 20 m, D15 plug	(only with option 1 = MB)	
Р	Plug HS6P, welded	(only with option 1 = MBP	
Α	ATEX II 2 G EEx ib IIC T4, connection cable, 3 m, free ends	(only with option 1 = MB)	
в	ATEX II 2 G EEx ib IIC T4, connection cable, 3 m, free ends	(only with option 1 = MB)	
С	ATEX II 2 G EEx ib IIC T4, plug HS6P, welded	(only with option 1 = MBP	

9

Subject to modifications.

All product descriptions are for general information only. They are not to be understood as a guarantee of quality or durability. Hottinger Baldwin Messtechnik GmbH Im Tiefen See 45 · 64293 Darmstadt · Germany Tel. +49 6151 803-0 · Fax +49 6151 803-9100 Email: info@hbm.com · www.hbm.com

measure and predict with confidence