

Liceo Classico "Gioacchino da Fiore" – Rende (CS) Prof.ssa Fabiola Salerno – a.s. 20/21

GRAVITATIONAL WAVES

What is a gravitational wave	? lt's a 1	in the 2.	of
space and time.			
Imagine that space is a gian	t 3	_ of 4	: things that
have mass cause that 5	6	t	to bend, like a bowling
ball on a trampoline. The m	nore mass, the more that	space gets 7	and
distorted by gravity. For example, the reason the earth goes around the sun is that the sun is very			
8 , c	ausing a big 9	of the s	pace around it. If you
just try to move in	a 10	line arc	ound such a big
11,	you will find	yourself actually	moving in a
12			
That's how 13	work: there's	not an actual forc	e pulling the planets
around, just a 14 of the space. Gravitational waves are produced			
whenever masses accelerate, changing the 15 of space. Everything with			
mass and/or energy can make gravitational waves. If you and I started to dance around each			
other, we would also cause 16 in the 17 of			
space and time. But these would be extremely small. Practically 18 Now			
gravity is very weak in the scale of the other forces in the Universe, so you need something really			
really 19	moving very	, very fast, to	make the big
20	that we can 21	How	would you observe a
22	in the space? If	the space betwe	en you and me
23	or 24	, we wouldn't ha	ave noticed if we had
made marks on our metag	ohorical 25	26	, for
example, using equally	spaced rocks. Becau	use these marks	would also get
27	further apart. But th	nere is one ruler	that doesn't get
28,	one made using the speed	d of light. If the space	e between two points
get 29	, then light will take lon	ger to go from one p	oint to the other. And
if the space gets 30	, light take	es less time to cross t	the two points. This is
where the 31	experiment	comes in. It has	s 4 kilometer long
32	and uses 33	to measu	re the changes in the
distance between the ends of the 34 . When a gravitational wave comes			
through, it 35 space in one direction and 36			
space in the other direction. By measuring the interference of the 37 as			
they bounce between the different points, physicists can measure very precisely whether the			
space in between has 38	3	or 39	And the
precision needed is incredib	ile. To 40	a gravitatior	nal wave, you need to
be able to tell when something changes in length by a few parts in 10 to the 23. It is like being able			

STEM

Liceo Classico "Gioacchino da Fiore" – Rende (CS) Prof.ssa Fabiola Salerno – a.s. 20/21

to tell that a stick one **41**.______ meters long has **42**.______ by 5 mm. The effect of a gravitational wave is so minuscule and easily confused with random noise you need a smart data analysis technique. Scientists hope to identify the patterns of gravitational waves by comparing the **43**._______ they measure in the experiment to the **44**._______ they expect from the gravitational waves. That's like trying to identify a song being **45**._______ at a noisy party. A very, very noisy party. Imagine that your whole life you had been **46**._______ until one day your hearing was restored. You'd be able to explore the Universe in this whole new way. That's why **47**.______ gravitational waves are so significant. It's a completely new way of studying the Universe. Anytime there's a new way to investigate the Universe we discover things that we didn't expect. It's really about looking for new things that we didn't know existed, examining the extreme edges of our knowledge of physics and testing our theories about how the Universe works.