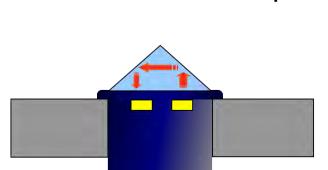

Application Note

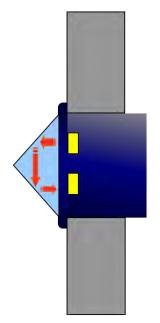
Optical Liquid Level Sensor Operating Principle

An optical liquid level sensor uses an infra-red LED and phototransistor accurately positioned at the base of the sensor's tip. When the tip is air, infra-red light reflects internally round the tip to the phototransistor providing good optical coupling between the two. When the sensor's tip is immersed in liquid, the infra-red light escapes from the tip causing a change in the amount of light at the phototransistor which makes the output change state.

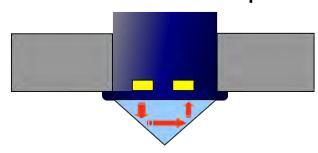
Sensor Tip Immersed Water

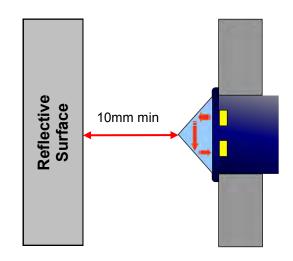


Application Note Optical Liquid Level Sensor Mounting Guide


Optical liquid level sensors must be mounted from the side or from the bottom for proper use. Mounting sensors from the top down must be avoided to stop false readings caused by liquid droplets holding to the sensing tip.

Optical liquid level sensor performance can be affected by reflective surfaces in front of the sensing tip. Contact Cynergy3 if you wish to use a sensor within 10mm of a reflective surface.


Mounted from the side


Mounted from the bottom up

DO NOT mount from the top down

Avoid reflective surfaces within 10mm of sensing tip

Application Note

Compatible Fluids for Polysulphone

Whilst the following list may be used as a guide and gives common industrial fluids that are typically acceptable, we recommend that before use you check that the fluid you wish to use this device in is compatible with polysulphone. See Page 4.

Acetic acid - Glacial Acetic acid - 10% Ammonia - 88

Ammonium Hydroxide - 10% Ammonium Chloride - 10%

Aviation spirit Benzene Benzoic acid Bleach

Brine Butane

Calcium Nitrate

Calcium Hyphochlorite Carbon Tetrachloride

Chromic acid Copper Sulphate

Creosote
Cyclohexane
Cyclohexanol
Detergent solutions

Diethylamine
Diethyl Ether
Dioctyl Phthalate
Edible fats & oils
Ethanol 50%
Ethyl Alcohol
Ethylene Glycol
Ferric Chloride
Formaldehyde
Formic acid

Glycerol Heptane

Hydrochloric acid 10% Hydrochloric acid conc. Hydrogen Peroxide

Isopropanol Iso-Octane Kerosene Linseed oil

Magnesium Sulphate

Methanol

Motor oil

Nitric acid 10% Oils - Vegetable Oxalic acid

Petroleum Ether

Potassium Hydroxide 10% Potassium Hydroxide 50%

Silicone fluids Silver Nitrate Soap solution Sodium Chloride Sodium Hydroxide 10%

Sodium Hydroxide 50%
Sulphuric acid 10%
Transformer oil
Turpentine
Varnish
Water
White Spirit

Application Note Checking for compatibility of liquids.

The chemical compatibility lists are not exhaustive and customers often want to use our sensors with liquids that have not been approved before. In this case, the customer should perform a compatibility test using a sensor made with the material (Polysulphone) they wish to use.

The test is simple and is performed as follows:

- Submerge the sensor tip in the liquid of interest. The liquid should be heated to the maximum expected operating temperature.
- The sensor should be left in this liquid at the maximum operating temperature for 2 weeks.
- Remove the sensor and inspect it for signs of :
- Cracking
- Crumbling
- Crazing
- Meltina
- Deformation
- Assuming the sensor appears to have survived. Then it should be tested in accordance with it's operating procedure.
- If the sensor passes it's functional tests, then the liquid is deemed to be compatible with the sensor's housing material.

WARNING

Personal Injury

DO NOT USE these products as safety or

Emergengy Stop devices or in any other application Where failure of the product could result in

Personal injury.

Failure to comply with these instructions could

Result in death or serious injury.

CAUTION

Do not exceed maximum ratings.

Although the sensor is protected against supply reversal, it is not recommended.

Do not overtighten screw-in type.

Do not use chlorinated solvents.

Do not mount with dome pointing downwards.

Failure to comply with these instructions may result in product damage.

It is the customer's responsibility to ensure that this product is suitable for use in their application. For techincal assistance or advice, please email us: sales@cynergy3.com

General Note: Cynergy3 Components Ltd reserves the right to make changes in product specifications without notice. All information is subject to Cynergy3's own data and is considered accurate at time of going to print.

