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Abstract

This paper presents the first randomized approach to kinodynamic
planning (also known as trajectory planning or trajectory design).
The task is to determine control inputs to drive a robot from an initial
configuration and velocity to a goal configuration and velocity while
obeying physically based dynamical models and avoiding obstacles
in the robot’s environment. The authors consider generic systems
that express the nonlinear dynamics of a robot in terms of the robot’s
high-dimensional configuration space. Kinodynamic planning is
treated as a motion-planning problem in a higher dimensional state
space that has both first-order differential constraints and obstacle-
based global constraints. The state space serves the same role as the
configuration space for basic path planning; however, standard ran-
domized path-planning techniques do not directly apply to planning
trajectories in the state space. The authors have developed a ran-
domized planning approach that is particularly tailored to trajectory
planning problems in high-dimensional state spaces. The basis for
this approach is the construction of rapidly exploring random trees,
which offer benefits that are similar to those obtained by success-
ful randomized holonomic planning methods but apply to a much
broader class of problems. Theoretical analysis of the algorithm
is given. Experimental results are presented for an implementation
that computes trajectories for hovercrafts and satellites in cluttered
environments, resulting in state spaces of up to 12 dimensions.

KEY WORDS—motion planning, trajectory planning, non-
holonomic planning, algorithms, collision avoidance

1. Introduction

There is a strong need for a general purpose, efficient plan-
ning technique that determines control inputs to drive a robot
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from an initial configuration and velocity to a goal configu-
ration and velocity while obeying physically based dynami-
cal models and avoiding obstacles in the robot’s environment
(see Fig. 1). In other words, a fundamental task is to design
a feasible open-loop trajectory that satisfies both global ob-
stacle constraints and local differential constraints. We use
the words kinodynamic planning, introduced in Donald et al.
(1993), to refer to such problems. (In nonlinear control liter-
ature, kinodynamic planning for underactuated systems is en-
compassed by the definition of nonholonomic planning. Us-
ing control-theoretic terminology, we characterize our work
as open-loop trajectory design for nonlinear systems with drift
and nonconvex state constraints. Other terms include trajec-
tory planning and trajectory design.) These solutions would
be valuable in a wide variety of applications. In robotics, a
nominal trajectory can be designed for systems such as mo-
bile robots, manipulators, space robots, underwater robots,
helicopters, and humanoids. This trajectory can be used to
evaluate a robot design in simulation, or as a reference tra-
jectory for designing a feedback control law. In virtual pro-
totyping, engineers can use these trajectories to evaluate the
design of many mechanical systems, possibly avoiding the
time and expense of building a physical prototype. For ex-
ample, in the automotive industry, the planning technique can
serve as a “virtual stunt driver” that determines whether a
proposed vehicle can make fast lane changes or can enter a
dangerous state such as toppling sideways. In the movie and
game industries, advanced animations can be constructed that
automate the motions of virtual characters and devices while
providing realism that obeys physical laws. In general, such
trajectories may be useful in any application area that can be
described using control theoretic models, from analog circuits
to economic systems.

The classic approach in robotics research has been to de-
couple the general robotics problem by solving basic path
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Fig. 1. We consider planning problems with dynamic con-
straints induced by physical laws. The above image shows
the state exploration trees computed for a rigid rectangular
object (bottom left). The goal location is represented by a
sphere (upper right).

planning and then finding a trajectory and controller that
satisfies the dynamics and tracks the path (Bobrow,
Dubowsky, and Gibson 1985; Latombe 1991; Shiller and
Dubowsky 1991). The vast majority of basic path-planning
algorithms considers only kinematics while ignoring the sys-
tem dynamics entirely. In this paper, we consider kinody-
namic planning as a generalization of holonomic and nonholo-
nomic planning in configuration spaces by replacing popu-
lar configuration-space notions (Lozano-Perez 1983) by their
state-space (or phase-space) counterparts. A point in the state
space may include both configuration parameters and velocity
parameters (i.e., it is the tangent bundle of the configuration
space).

It may be the case that the result of a purely kinematic
planner will be unexecutable by the robot in the environment
because of limits on the actuator forces and torques. Impreci-
sion in control, which is always present in real-world robotic
systems, may require explicitly modeling system dynamics to
guarantee collision-free trajectories. Robots with significant
dynamics are those in which natural physical laws, along with
limits on the available controls, impose severe constraints on
the allowable velocities at each configuration. Examples of
such systems include helicopters, airplanes, certain classes
of wheeled vehicles, submarines, unanchored space robots,
and legged robots with fewer than four legs. In general, it
is preferable to look for solutions to these kinds of systems
that naturally flow from the physical models, as opposed to
viewing dynamics as an obstacle.

These concerns provide the general basis for kinodynamic
planning research. One of the earliest algorithms was pre-
sented in Sahar and Hollerbach (1986), in which minimum-

time trajectories were designed by tessellating the joint space
of a manipulator and performing a dynamic programming-
based search that uses time-scaling ideas to reduce the search
dimension. Algebraic approaches solve for the trajectory
exactly, although the only known solutions are for point
masses with velocity and acceleration bounds in one dimen-
sion (O’Dunlaing 1987) and two dimensions (Canny, Rege,
and Reif 1991). Dynamic programming-based algorithms
that provide approximately optimal solution trajectories were
introduced in Donald et al. (1993). Other papers have ex-
tended or modified this technique (Donald and Xavier 1995a,
1995b; Heinzinger et al. 1990; Reif and Wang 1997). A
dynamic programming-based approach to kinodynamic plan-
ning for all-terrain vehicles was presented in Cherif (1999).
Ferbach (1996) performed a state-space search using an incre-
mental, variational approach. An approach to kinodynamic
planning based on Hamiltonian mechanics was presented in
Connolly, Grupen, and Souccar (1995). An efficient approach
to kinodynamic planning was developed by adopting a sensor-
based philosophy that maintains an emergency stopping path
that accounts for robot inertia (Shkel and Lumelsky 1997).
Although several kinodynamic planning approaches exist,
they are limited to either low-degree-of-freedom problems
or particular systems that enable simplification. Randomized
techniques have led to efficient, incomplete planners for basic
holonomic path planning; however, there appears to be no
equivalent technique for the broader kinodynamic planning
problem (or even nonholonomic planning in the configuration
space). We present a randomized approach to kinodynamic
planning that quickly explores the state space and scales well
for problems with high degrees of freedom and complicated
system dynamics. Our ideas build on a large foundation of
related research, which is briefly presented in Section 2.
Section 3 defines the problem. Our proposed planning
approach is based on the concept of rapidly exploring random
trees (RRTs) (LaValle 1998b) and is presented in Section 4.
To demonstrate the utility of our approach, a series of planning
experiments for hovercrafts in 3 and spacecrafts in %> are
presented in Section 5. Theoretical analysis of the planner’s
performance is given in Section 6. Finally, some conclusions
and directions for future research are provided in Section 7.

2. Other Related Research

2.1. Dynamic Programming

For problems that involve low degrees of freedom, classical
dynamic programming ideas can be employed to yield nu-
merical optimal control solutions (Bellman 1957; Bertsekas
1975; Larson and Casti 1982; LaValle 1998a). Because con-
trol theorists have traditionally preferred feedback solutions,
the representation often takes the form of a mesh over which
cost-to-go values are defined using interpolation, enabling in-
puts to be selected over any portion of the state space. If open-
loop solutions are the only requirement, then each cell in the
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mesh could be replaced by a vertex that represents a single
state within the cell. In this case, the control-theoretic numer-
ical dynamic programming technique can often be reduced to
the construction of a tree grown from an initial state (Larson
1967). This idea has been proposed in path-planning liter-
ature for nonholonomic planning (Barraquand and Latombe
1991a; Lynch and Mason 1996) and kinodynamic planning
(Cherif 1999; Donald et al. 1993). Because these methods are
based on dynamic programming and systematic exploration
of a grid or mesh, their application is limited to problems with
low degrees of freedom.

2.2. Steering Methods

The steering problem has received considerable attention in
recent years. The task is to compute an open-loop trajectory
that brings a nonholonomic system from an initial state to a
goal state without the presence of obstacles. Given the gen-
eral difficulty of this problem, most methods apply to purely
kinematic models (i.e., systems without drift or momentum).
For a kinematic car that has a limited turning radius and moves
forward only, it was shown that the shortest path between any
two configurations belongs to one of a family of six kinds
of curves comprising straight lines and circular arcs (Dubins
1957). For a car that can move forward or backward, opti-
mal solutions comprising 48 curve types have been obtained
(Boissonnat, Cérézo, and Leblond 1994; Reeds and Shepp
1990; Sussman and Tang 1991). For more complicated kine-
matic models, nonoptimal steering techniques have been in-
troduced, which include for example a car pulling trailers
(Murray and Sastry 1993) and fire trucks (Bushnell, Tilbury,
and Sastry 1995). Techniques also exist for general system
classes, such as nilpotent (Laffierriere and Sussman 1991),
differentially flat (Murray, Rathinam, and Sluis 1995; Fliess
et al. 1993), and chained form (Bushnell, Tilbury, and Sastry
1995; Murray and Sastry 1993; Struemper 1997). For sys-
tems with drift and/or obstacles, the steering problem remains
a formidable challenge.

2.3. Nonholonomic Planning

The nonholonomic planning problem was introduced in Lau-
mond (1987) and has blossomed into a rich area of research
in recent years. Rather than surveying this large body of re-
search, we refer the reader to recent, detailed surveys (Duleba
1998; Laumond, Sekhavat, and Lamiraux 1998). Most cur-
rent approaches to nonholonomic planning rely on the exis-
tence of steering methods that can be used in combination with
holonomic motion-planning techniques. Other approaches
exploit particular properties or very special systems (espe-
cially kinematic car models). For most nonholonomic sys-
tems, it remains a great challenge to design efficient path-
planning methods.

2.4. Lower Bounds

Kinodynamic planning in general is at least as difficult as
the generalized mover’s problem, which has been proven to
be PSPACE-hard (Reif 1979). Hard bounds have also been
established for time-optimal trajectories. Finding an exact
time-optimal trajectory for a point mass with bounded ac-
celeration and velocity moving amid polyhedral obstacles in
three dimensions has been proven to be NP-hard (Donald et al.
1993). The need for simple, efficient algorithms for kinody-
namic planning, along with the discouraging lower bound
complexity results, has motivated us to explore the develop-
ment of randomized techniques for kinodynamic planning.
This parallels the reasoning that led to the success of random-
ized planning techniques for holonomic path planning.

2.5. Randomized Holonomic Planning

It would certainly be useful if ideas could be borrowed or
adapted from existing randomized path-planning techniques
that have been successful for basic, holonomic path planning.
For the purpose of discussion, we choose two different tech-
niques that have been successful in recent years: randomized
potential fields (e.g., Barraquand and Latombe 1991b; Chal-
lou et al. 1995) and probabilistic roadmaps (e.g., Amato and
Wu 1996; Kavraki et al. 1996). In the randomized potential
field approach, a heuristic function is defined on the config-
uration space that attempts to steer the robot toward the goal
through gradient descent. If the search becomes trapped in
a local minimum, random walks are used to assist in escape.
In the probabilistic roadmap approach, a graph is constructed
in the configuration space by generating random configura-
tions and attempting to connect pairs of nearby configurations
with a local planner. Once the graph has been constructed,
the planning problem becomes one of searching a graph for
a path between two nodes. If an efficient steering method
exists for a particular system, then it is sometimes possible
to extend randomized holonomic planning techniques to the
case of nonholonomic planning (Svestka and Overmars 1995;
Sekhavat et al. 1997; Sekhavat et al. 1998).

2.6. Drawing Inspiration from Previous Work

Inspired by the success of randomized path-planning tech-
niques and Monte Carlo techniques in general for addressing
high-dimensional problems, it is natural to consider adapt-
ing existing planning techniques to our problems of inter-
est. The primary difficulty with existing techniques is that
although they are powerful for standard path planning, they
do not naturally extend to general problems that involve dif-
ferential constraints. The randomized potential field method
(Barraquand, Langlois, and Latombe 1992), while efficient
for holonomic planning, depends heavily on the choice of
a good heuristic potential function, which could become a
daunting task when confronted with obstacles and differential
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constraints. In the probabilistic roadmap approach (Amato
and Wu 1996; Kavraki et al. 1996), a graph is constructed in
the configuration space by generating random configurations
and attempting to connect pairs of nearby configurations with
a local planner that will connect pairs of configurations. For
planning of holonomic systems or steerable nonholonomic
systems (see Laumond, Sekhavat, and Lamiraux 1998), the
local planning step might be efficient; however, in general the
connection problem can be as difficult as designing a non-
linear controller, particularly for complicated nonholonomic
and dynamical systems. The probabilistic roadmap technique
might require the connections of thousands of configurations
or states to find a solution, and if each connection is akin to
a nonlinear control problem, it seems impractical for solving
problems with differential constraints. Furthermore, the prob-
abilistic roadmap is designed for multiple queries. The un-
derlying theme in that work is that it is worthwhile to perform
substantial precomputation on a given environment to enable
numerous path-planning queries to be solved efficiently.

In our approach, we are primarily interested in answering a
single query efficiently without any preprocessing of the envi-
ronment. In this case, the exploration and search are combined
in a single method without substantial precomputation that is
associated with a method such as the probabilistic roadmap.
This idea is similar to classical artificial intelligence search
techniques, the Ariadne’s clew algorithm for holonomic plan-
ning (Mazer, Ahuactzin, and Bessiere 1998), and the related
holonomic planners in Hsu, Latombe, and Motwani (1999)
and Yu and Gupta (1998).

To directly handle differential constraints, we would like
to borrow some of the ideas from numerical optimal control
techniques while weakening the requirements enough to ob-
tain methods that can apply to problems with high degrees of
freedom. As is common in most of path-planning research,
we forgo an attempt to obtain optimal solutions and attempt to
find solutions that are “good enough” as long as they satisfy
all of the constraints. This avoids the use of dynamic pro-
gramming and systematic exploration of the space; however,
a method is needed to guide the search in place of dynamic
programming. These concerns have motivated our develop-
ment of RRTs (LaValle 1998b) and the proposed planning
algorithm.

2.7. Recent Advances

This paper is an expanded version of LaValle and Kuffner
(1999). Since that time, several interesting developments
have occurred. The ideas contained in Frazzoli, Dahleh, and
Feron’s (1999) paper were applied to the problem of designing
trajectories for a helicopter flying among polyhedral obsta-
cles. Substantial performance benefits were obtained by using
a metric based on the optimal cost-to-go for a hybrid nonlin-
ear system that ignores obstacles. In Toussaint, Basar, and
Bullo (2000), H* techniques and curve fitting were applied

to yield an efficient planner that builds on ideas from LaValle
and Kuffner (1999). A randomized kinodynamic planning
algorithm was proposed recently for the case of time-varying
environments in Kindel et al. (2000). A deterministic kinody-
namic planning algorithm based on collocation was presented
recently in Faiz and Agrawal (2000).

3. Problem Formulation: Path Planning in the
State Space

We formulate the kinodynamic planning problem as path
planning in a state space that has first-order differential con-
straints. For kinodynamic planning, the state space will serve
the same purpose as the configuration space for the classi-
cal path-planning problem. Let € denote the configuration
space (C-space) that arises from a rigid or articulated body
that moves in a two- or three-dimensional world. Each con-
figuration g € C represents a transformation that is applied to
a geometric model of the robot. Let X denote the state space
in which a state, x € X, is defined as x = (g, ¢). The state
could include higher order derivatives if necessary, but such
systems are not considered in this paper.

3.1. Differential Constraints

When planning in G, differential or nonholonomic constraints
often arise from the presence of one or more rolling contacts
between rigid bodies or from the set of controls that it is possi-
ble to apply to a system. When planning in X, nonholonomic
constraints also arise from conservation laws (e.g., angular
momentum conservation). Using Lagrangian mechanics, the
dynamics can be represented by a set of equations of the form
hi(g,q,q) = 0. Using the state-space representation, this
can be simply written as a set of m implicit equations of the
form g;(x,x) = 0,fori = 1,...,m and m < 2n, in which
n is the dimension of €. It is well-known that under appro-
priate conditions, the implicit function theorem allows the
constraints to be expressed as

X =f(x,u), ey

in which u € U, and U represents a set of allowable controls
or inputs. Equation (1) effectively yields a convenient param-
eterization of the allowable state transitions via the controls
inU.

The proposed approach will require a numerical approxi-
mation to (1). Given the current state, x (¢), and inputs applied
over a time interval, {u(t’) | t < t' <t + At}, the task is to
compute x (¢t + At). This can be achieved using a variety
of numerical integration techniques. For example, assuming
constant input, u, over the interval [¢, # + At), a standard form
of fourth-order Runge-Kutta integration yields

. At
x'=f <X(t) + Tf(x(t), u), u>
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" __ At/
X —f<x(t)+7x,u>

At
X" =f <x(t) + Tx”, u)

and
At / 1 "
x(t—i—At)%x(t)—i-?(f(x(t),u)—i—Zx +2x" +x7).

For many applications, (1) might not be available. For
example, motions might be generated from a complicated dy-
namical simulation package that considers collisions, flexible
parts, vehicle dynamics, finite element analysis, and so on.
For these cases, our techniques can be directly applied with-
out requiring (1). The only requirement is that an incremental
simulation of the system be generated for any current state and
input.

3.2. Obstacles in the State Space

Assume that the environment contains static obstacles and
that a collision detection algorithm can determine efficiently
whether a given configuration is in collision. It may even be
assumed that an entire neighborhood around a configuration is
collision free by employing distance computation algorithms
(Lin and Canny 1991; Mirtich 1997; Quinlan 1994). There are
interesting differences between finding collision-free paths in
C versus in the state space, X(. When planning in G, it is
useful to characterize the set G, of configurations at which
the robot is in collision with an obstacle (or itself) (Latombe
1991). The path-planning problem involves finding a contin-
uous path that maps into Cf,.. = C\ Cyps. For planning in
X, this could lead to a straightforward definition of X, by
declaring x € X, if and only if g € Cpps; for x = (g, ¢).
However, another interesting possibility exists: the region of
inevitable collision. Let X,;. denote the set of states in which
the robot is either in collision or, because of momentum, can-
not do anything to avoid collision. More precisely, a state
lies in X,;. if there exist no inputs that can be applied over
any time interval to avoid collision. Note that X,p5r S Xyic-
Thus, it might be preferable to define X free = X\ Xpjc as
opposed to X \ Xopst-

The region of inevitable collision, X,;., provides some
intuition about the difficulty of kinodynamic planning over
holonomic and purely kinematic nonholonomic planning.
Figure 2 illustrates conservative approximations of X,;. for
a point mass robot that obeys Newtonian mechanics without
gravity. The robot is assumed to have L?-bounded accelera-
tion and an initial velocity pointing along the positive x-axis.
As expected intuitively, if the speed increases, X,;. grows.
Ultimately, the topology of X \ X,;. may be quite distinct
from the topology of X \ X,pss, Which intuitively explains
part of the challenge of the kinodynamic planning problem.
Even though there might exist a kinematic collision-free path,

a kinodynamic trajectory might not exist. For the remainder
of the paper, we assume that X fre.e = X\ Xopsr (0ne could
alternatively define X rree = X\ Xpic).

3.3. A Solution Trajectory

The kinodynamic planning problem is to find a trajectory
from an initial state x;,;; € X to a goal state xgoq € X
or goal region Xgoq; C X. A trajectory is defined as a time-
parameterized continuous path 7 : [0, T] — X sy that sat-
isfies the nonholonomic constraints. Recall from (1) that the
change in state is expressed in terms of an input, #. A more
convenient way to formulate the problem is to find an input
function u : [0, T] — U that results in a collision-free tra-
jectory that starts at x;;;; and ends at Xgoq1 OF Xgoar. The
trajectory, x(¢) for ¢ € [0, T], is determined through the inte-
gration of (1). It might also be appropriate to select a path that
optimizes some criterion, such as the time to reach xgo4;. Itis
assumed that optimal solutions are not required; however, in
this paper we assume that there is some loose preference for
better solutions. A similar situation exists in the vast majority
of holonomic planning methods.

3.4. Why Does the Problem Present Unique Challenges?

The difference between X and C is usually a factor of 2 in di-
mension. The curse of dimensionality has already contributed
to the success and popularity of randomized planning methods
for C-space; therefore, it seems that there would be an even
greater need to develop randomized algorithms for kinody-
namic planning. One reason that might account for the lack
of practical, efficient planners for problems in X-space is that
attention is usually focused on obtaining optimal solutions
with guaranteed deterministic convergence. The infeasibility
of this requirement for generic high-dimensional systems has
led many researchers to adopt a decoupled approach in which
classical motion planning is performed and trajectory design
is optimized around a particular motion-planning solution.
Another reason randomized kinodynamic planning ap-
proaches have not appeared is that kinodynamic planning is
considerably harder owing to momentum. Consider adapting
randomized holonomic planning techniques to the problem of
finding a path in X ¢, that also satisfies (1) instead of find-
ing a holonomic path in Cf,e.. The potential field method
appears to be well suited to the problem because a discrete-
time control can repeatedly be selected that reduces the poten-
tial. The primary problem is that dynamical systems usually
have drift, which could easily cause the robot to overshoot the
goal, leading to oscillations. Without a cleverly constructed
potential function (which actually becomes a difficult nonlin-
ear control problem), the method cannot be expected to work
well. Imagine how often the system will be pulled into X ;..
The problem of designing a good heuristic function becomes
extremely complicated for the case of kinodynamic planning.
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Fig. 2. Slices of X for a point mass robot in two dimensions with increasingly higher initial speeds. White areas represent
X free, black areas are X,py, and gray areas approximate X, ;c.

The probabilistic roadmap technique might also be
amenable to kinodynamic planning. The primary require-
ment is the ability to design a local planner that will connect
pairs of configurations (or states in our case) that are gener-
ated at random. Indeed, this method was successfully applied
to a nonholonomic planning problem in Svestka and Over-
mars (1995). One result that greatly facilitated this extension
of the technique to nonholonomic planning was the existence
of Reeds-Shepp curves (Reeds and Shepp 1990) for carlike
robots. This result enables the connection of two configu-
rations with the optimal-length path. For more complicated
problems, such as kinematic planning for a tractor-trailer, a
reasonable roadmap planner can be developed using steering
results (Sekhavat et al. 1998). These results enable a system
to be driven from one configuration to another and generally
apply to driftless systems that are nilpotentizable (a condi-
tion on the underlying Lie algebra). In general, however,
the connection problem can again be as difficult as designing
a nonlinear controller. The probabilistic roadmap technique
might require the connections of thousands of states to find a

solution, and if each connection is akin to a nonlinear control
problem, it seems impractical for systems that do not allow
efficient steering.

4. A Planner Based on RRTs

The unique difficulties encountered in kinodynamic planning
motivated us to design a randomized planning technique par-
ticularly suited for kinodynamic planning (it also applies to the
simpler problems of nonholonomic planning in € and basic
path planning in C) (Kuffner and LaValle 2000). Our inten-
tion was to develop a method that easily “drives forward” like
potential field methods or the Ariadne’s clew algorithm and
also quickly and uniformly explores the space like probabilis-
tic roadmap methods.

To motivate and illustrate the concepts, first consider the
simple case of planning for a point robot in a two-dimensional
configuration space. To prepare for the extension to kino-
dynamic planning, suppose that the motion of the robot is
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governed by acontrol law, x;41 = f (xk, ux), whichis consid-
ered as a discrete-time approximation to (1). For this simple
problem, suppose that U represents a direction in S! toward
which the robot can be moved a fixed, small distance in time
At. Consider Figure 3, in which the robot starts at (50, 50)
in an environment that ranges from (0, 0) to (100, 100). The
robot can move two units in one application of the discrete-
time control law. The first scheme can be considered as anaive
random tree, which is incrementally constructed by randomly
choosing an existing vertex, xi, from the tree and a control,
ur € U, at random and adding an edge of length 2 from x; to
f(xk, ur). Although it appears somewhat random, this tree
has a very strong bias toward places it has already explored.
To overcome this bias, we propose to construct an RRT as
follows. Insert the initial state as a vertex. Repeatedly select
a point at random in [0, 100] x [0, 100] and find the nearest
neighbor, x, in the tree. Choose the control u € U that pulls
the vertex toward the random point. Insert the new edge and
vertex for xy4+1 = f(xk, ur). This technique generates a tree
that rapidly explores the state space. An argument for this can
be made by considering the Voronoi regions of the vertices
(see Fig. 4). Random sampling tends to extend vertices that
have larger Voronoi regions and therefore have too much un-
explored space in their vicinity. By incrementally reducing
the size of larger Voronoi regions, the graph spreads in a uni-
form manner. It is shown in Kuffner and LaValle (2000) that
for holonomic planning, the distribution of RRT vertices con-
verges in probability to distribution that is used for sampling,
even in nonconvex spaces (regardless of the initial state).
The algorithm that constructs an RRT is shown in Figure 5.
A simple iteration is performed in which each step attempts
to extend the RRT by adding a new vertex that is biased by a
randomly selected state. The EXTEND function, illustrated
in Figure 6, selects the nearest vertex already in the RRT to
the given sample state. The “nearest” vertex is chosen ac-
cording to the metric, p. The function NEW_STATE makes
a motion toward x by applying an input u € U for some time
increment Af. In general, Ar may be much larger than the
time increment that is used for numerical integration. Az can
be fixed or selected randomly at each iteration from a range
of values (0, Aj;4¢]. The input, u, can be chosen at random
or be selected by trying all possible inputs and choosing the
one that yields a new state as close as possible to the sample,
x (if U is infinite, then a discrete approximation or analyt-
ical technique can be used). NEW_STATE also implicitly
uses the collision detection function to determine whether the
new state (and all intermediate states) satisfies the global con-
straints. For many problems, this can be performed quickly
(“‘almost constant time”’) using incremental distance compu-
tation algorithms (Guibas, Hsu, and Zhang 1999; Lin and
Canny 1991; Mirtich 1997) by storing the relevant invariants
with each of the RRT vertices. If NEW_STATE is successful,
the new state and input are represented in X,ey, and uyey, re-
spectively. Three situations can occur: reached, in which the

new vertex reaches the sample x (for the nonholonomic plan-
ning case, we might instead have a threshold, || x,e —X|| < €
for a small € > 0); advanced, in which a new vertex X,y 7# X
is added to the RRT; and trapped, in which NEW_STATE fails
to produce a state that lies in X 7.

4.1. Rapidly Exploring the State Space

When moving from the problem shown in Figure 3 to ex-
ploring X for a kinodynamic planning problem, several com-
plications immediately occur: (1) the dimension is typically
much higher, (2) the tree must stay within X fyc, (3) drift
and other dynamic constraints can yield undesired motions
and biases, and (4) there is no natural metric on X for select-
ing nearest neighbors. For the first complication, approximate
nearest neighbor techniques (Aryaet al. 1998; Indyk and Mot-
wani 1998) can be employed to improve performance. The
second complication can make it more difficult to wander
through narrow passages, much like in the case of probabilis-
tic roadmaps (Hsu et al. 1998). The third complication can be
partly overcome by choosing an action that brings the velocity
components of x as close as possible toward the random sam-
ple. The fourth complication might lead to the selection of
one metric over another for particular kinodynamic planning
problems if one wants to optimize performance. In theory,
there exists a perfect metric (or pseudometric due to asym-
metry) that could overcome all of these complications if it
were easily computable. This is the optimal cost (for any
criterion, such as time, energy, etc.) to get from one state
to another. Unfortunately, computing the ideal metric is as
difficult as solving the original planning problem. In gen-
eral, we try to overcome these additional complications while
introducing as few heuristics as possible. This enables the
planner to be applied with minor adaptation to a broad class
of problems. Further discussion of the metric issue appears
in Section 7.

4.2. A Bidirectional Planning Algorithm

The basic RRT algorithm shown in Figure 5 may be used to
explore the state space, but it is not designed to directly answer
apath-planning query. For the latter task, we borrow classical
bidirectional search ideas (Pohl 1969) to grow two RRTs, one
rooted at the initial state x;,;, and the other rooted at xg4q;.
The algorithm searches for states that are “common” to both
trees. Two states, x and x’, are considered to be common
if p(x,x’) < € for some metric p and small ¢ > 0. Our
basic algorithm stops at the first solution trajectory found, but
one could continue to grow the trees and maintain a growing
collection of solution trajectories. The “best” solution found
so far can be chosen according to a cost functional based on
some criterion (such as execution time or energy expended).

Figure 7 shows the RRT_BIDIRECTIONAL algorithm,
which may be compared with the BUILD_RRT algorithm of
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Fig. 3. A naive random tree versus a rapidly exploring random tree. Each tree has 2000 vertices.

Fig. 4. The rapidly exploring random tree contains a Voronoi bias that causes rapid exploration.
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BUILD_RRT(x;y;;)

1 Tinit(xinir);

2 for k = 1to K do

3 Xrand < RANDOM_STATE();

4 EXTEND(T; Xyand);

5 Return 7

EXTEND(T, x)

1 Xnear < NEAREST_NEIGHBOR(x, 7);
2 if NEW_STATE(x, X,ear, Xnews Unew) then
3 T.add_vertex(x,ew);

4 T.add_edge(Xnear, Xnew, Unew);

5 if X,y = x then

6 Return Reached,

7 else

8 Return Advanced,

9 Return Trapped,;

Fig. 5. Basic rapidly exploring random tree construction algorithm.

XneW
| /O/

Fig. 6. EXTEND operation.

RRT_BIDIRECTIONAL(X;pif, Xgoal);

1 Ta init(Xinie); Tp-init(xgoar);

2 for k = 1to K do

3 Xrand < RANDOM_STATE();

4 if not (EXTEND(7,, Xrana) = Trapped) then
5 if (EXTEND(7%, Xpew) = Reached) then
6 Return PATH(7,, 73);

7 SWAP(T4, 7p);

8 Return Failure

Fig. 7. A bidirectional rapidly exploring random trees—based planner.
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Figure 5. RRT_BIDIRECTIONAL divides the computation
time between two processes: (1) exploring the state space
and (2) attempting to grow the trees into each other. Two
trees, 7, and 73, are maintained at all times until they become
connected and a solution is found. One tree is extended in
each iteration, and an attempt is made to connect the nearest
vertex of the other tree to the new vertex. Then, the roles are
reversed by swapping the two trees. The current algorithm is
a minor variation of the algorithm presented in LaValle and
Kuffner (1999). Previously, in each iteration both trees were
incrementally extended toward a random state. The current
algorithm attempts to grow the trees into each other half of the
time, which has been found to yield much better performance.

One drawback in using a bidirectional approach is that a
discontinuity in the trajectory will generally exist at the place
in which the two trees connect. A number of techniques can
be employed to make the trajectory continuous. Classical
shooting techniques can be applied to either half of the trajec-
tory. It might be possible to slightly perturb the starting point
of the second half of the trajectory to force it to begin at the
end of the first half of the trajectory. In this case, the second
half of the trajectory would have to be reintegrated and tested
for collision. Finally, it is possible for some systems to apply
a steering method to connect the two trajectories.

If no techniques effectively remove the discontinuity, then
one can use a single-RRT approach to bring the system from
Xinir 10 a goal region Xgo4. Instead of sampling randomly
from X, samples can be biased toward X 4,,. For example,
with probability p, a sample can be selected from X g,4;; Oth-
erwise, it is chosen at random from X. We have performed
successful experiments with single-RRT planners and several
different sampling techniques. It is possible to obtain rea-
sonable performance for numerous problems; however, the
bidirectional algorithm is far superior when it can be applied.
In practice, we have not experienced any difficulty applying
the bidirectional approach.

5. Experiments with Hovercrafts and
Spacecrafts

Several kinodynamic planning experiments were conducted
on challenging problems. The algorithm was implemented
in C++ on an 800-MHz Intel Pentium III PC with 256 MB
of memory running Linux. The systems considered involve
both nonrotating and rotating rigid objects with velocity and
acceleration bounds obeying L, norms.

5.1. Dynamic Model

All experiments used a dynamic model in a nongravity envi-
ronment derived from the Newtonian mechanics of a three-
dimensional rigid body (Baraff 1997). For some examples,
the allowable controls restrict the reachable state space to a
subspace of less than 12 dimensions, but a general model was

adopted for simplicity in testing and comparing a variety of
vehicle models. We consider a rigidbody 8 of mass M and
body inertia tensor / and define the following quantities:

P = [pxpy p-1" global position of the center
of mass

q = lq049xay g.]7  unit quaternion representing the
rotation in SO (3)

v = [vyvy v, 1T linear velocity (i.e., v =p)

o = [wxwy w. ]’ angular velocity

The full state vector of 8B is given by

p(t)
q(t)
v(t)
w(t)

x(t) =

The state vector consists of 13 real numbers, but the state space
has 12 dimensions owing to the constraint that the quaternion
must be of unit norm ||q||*> = 1. Each control u € U defines
a force-torque pair (F, ) acting on the center of mass of 8.
The equations of motion for the system can be defined as

p()
. 10
%0 = fa@.ue) = | 9
v(t)
w(t)
®)
v(t)
36@) - q(t)
= E P
M

ROIT'RNTt

where @(t) - q(t) represents the quaternion product between
[ 0 wy(®) wy(t) o (11" and q(t). The rotation matrix
R(#) and its transpose R(r)T are computed by converting
the quaternion (¢) to its equivalent matrix representation.
Details on this conversion, and sample C code for a similar
model, are given in Baraff (1997). Useful references on the
use of quaternions to represent orientation include Shoemake
(1985) and Mayo (1979).

5.2. Distance Metric

All experiments used a simple metric on X based on a
weighted Euclidean distance for position, linear velocity, and
angular velocity, along with a weighted metric on unit quater-
nions for orientation distance. The positive scalar function
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below attempts to heuristically encode a measure of the rela-
tive “closeness” between a pair of states x; and X:

p(x1,%2) = w,llp; — pall®> + wy(1 — |q; - qo))?
+ wylIvi = V2| > 4+ wy o) — w2,

where w,, wgy, wy, and wy,, are weights for position, orien-
tation, linear velocity, and angular velocity, respectively. In
our implementation, the weights are computed such that all
component distances are normalized on the range [0, 1]. The
quaternion scalar product |q; - q,| represents the cosine of the
angle formed between two unit quaternion vectors, yielding
a convenient measure of closeness in orientation.

As indicated previously, the ideal metric is the optimal
cost to go from one state to another, but its computation is
as difficult as the original planning problem. Additional ex-
perimentation is needed to evaluate the efficacy of the many
different metric functions possible for different systems (see
Section 7).

5.3. Applying Controls

Each example used a fixed set of controls U . Applying no
control and simply allowing the system to drift is also counted
as an additional control. We used a fixed At and applied each
control constantly over this time interval.

Because our dynamic model does not include contacts or
collisions, the equations of motion are nonstiff, and we are
able to use a simple fixed-step Euler method for numerical
integration. This worked well for both forward and backward
integration using a negative time step. For systems with stiff
equations, higher order methods or implicit integration meth-
ods should be used. The magnitude of the integrator time step
used for all examples was dt = 0.01 seconds. Note that this
time step is independent of the RRT time step Az used for
applying a control, which can be much larger.

5.4. Example Systems

For each of the following, we describe the set of controls,
the dimension of the reachable state space, and details of the
computations performed on trial environments. A summary
of the results is listed in Table 1. Standard metric units were
used (i.e., lengths in meters and forces in Newtons). The
workspace bounds were [0, 10 m] for each axis. The linear and
angular velocity bounds were [Iv]|? < 2.0 [m/s] and ||w]||? <
1.5 [rad/s], respectively.

1. Planar Translating Body (dim X = 4).

The first experiment considered a rigid rectangular object of
dimensions [0.4 m, 0.2 m, 0.4 m] with a set of translational
controls that restrict its motion to the xz-plane. A total of
four controls were used, consisting of a set of two pairs of
opposing forces acting through the center of mass of the body
(there were no torque components to the controls):

1 —1 0 0
Ur = 0 |, o |, o], 0
0 0 1 —1

Figure 8 shows snapshots during various stages of the compu-
tation. Anywhere between 400 and 2500 nodes are explored
on average before a solution trajectory is found, with a to-
tal computation time of approximately 5 seconds on average
(see Table 1). The tolerances used for state connection were
(ep =0.05,¢, =0.1).

2. Planar Body with Rotation (dim X = 6).

We extend the previous experiment to consider systems with
rotation. First, we consider the case of a rigid spacecraft
object of approximate dimensions [0.73 m, 0.13 m, 0.80 m]
with thrusters that allow it to rotate freely but translate only
in the forward direction. This model was inspired by the
popular video game Asteroids. As in the previous example,
the spacecraft motion is restricted to the xz-plane. The state
space of this system has six degrees of freedom, but only
three controls—translate forward, rotate clockwise, and rotate
counterclockwise—are provided:

0 0 0
Ur = O f,] 01],]0
L L] L O 0
ol [ O 0
U, = 0 (,| —0.01 |,[ 0.01
L0 | O 0

Figure 9 shows the explored states after 13,600 nodes. The
average total computation time for this example was approx-
imately 5 minutes. The tolerances used for state connection
were (e, = 0.075,¢;, = 0.08,¢, = 0.1, ¢, =0.1).

3. Translating Three-Dimensional Body (dim X = 6).

We consider the case of a free-floating rigid object, such as
an unanchored satellite in space, at a fixed orientation. The
object is assumed to be equipped with thruster controls to be
used for translating in a nongravity environment. The satellite
has rectangular dimensions [0.4 m, 0.2 m, 0.3 m] with three
opposing pairs of thrusters along each of its principal axes
forming a set of six controls spanning a six-dimensional state
space (there are no torque components to the controls):

1 —1 0 0
Ur = 0 1, 0 0 11,1 =1 |,
0 0 0
0 0
0, 0

—
p—

The task is to thrust through a sequence of two narrow pas-
sages amid a collection of obstacles. Figure 10 shows the
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No. of Triangles No. of No. of Computation Time (s)
Example System Robot  Obstacle Controls At Trials  Minimum Maximum Average
Planar translating body 12 228 4 0.25 100 2.39 12.15 4.59
(4 dimensions)
Planar Body with rotation 264 228 3 0.25 10 87.65 670.06 321.66
(6 dimensions)
Translating three- 12 300 6 0.30 50 19.32 220.78 58.12
dimensional body
(6 dimensions)
Three-dimensional satellite 64 1921 8 0.30 10 154.26 852.02 352.51
(12 dimensions)
Three-dimensional 1289 1769 5 0.30 10 292.03 1703.94 628.07

spacecraft (12 dimensions)

Fig. 8. Various stages of state exploration during planning. The top two images show the rapidly exploring random trees after
500 and 1000 nodes, respectively. The bottom two images show the final trees and the computed solution trajectory after 1582

nodes.
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Fig. 9. Rapidly exploring random trees of 13,600 nodes and solution trajectory for the planar body with unilateral thrusters
that allow it to rotate freely but translate only in the forward direction.

RRTs generated during the planning process, and Figure 11
shows one candidate solution found after a total of 16,300
nodes were explored. The average total computation time for
this case was approximately 1 minute. The tolerances used
for state connection were (e, = 0.1, ¢, = 0.1).

4. Three-Dimensional Body with Rotation (dim X = 12).
Finally, we show two results for underactuated rigid bodies
in a 3-dimensional world. These examples lead to a 12-
dimensional state space.

The first result is a fully orientable satellite model with
limited translation. The satellite is assumed to have momen-
tum wheels that enable it to orient itself along any axis and a
single pair of opposing thruster controls that allow it to trans-
late along the primary axis of the cylinder. This model has a
12-dimensional state space:

0 0 0 0 0
UF— 0 N 0 3 O P} 0 ’ 0 k)
0 0 0 0 0

0 0 0
I I T O B
o] Lo 0 |
f001 ] [ —001 ] [ 0
U, = o .| o |[,|oo01 |,
o0 | o || o
[0 o[ o
001 |,| o |, o |,
o 0.01 | | —0.01
0 0
ol.|o0
0 0

The task of the satellite, modeled as a rigid cylindrical object
of radius 0.2 m and height 0.6 m, is to perform a collision-
free docking maneuver into the cargo bay of the space shut-
tle model amid a cloud of obstacles. Figure 12 shows
the trajectories explored during the planning process, and
Figure 13 shows a candidate solution found after 23,800 states
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Fig. 10. Rapidly exploring random trees computed for the task of navigating a sequence of narrow passages for the three-

dimensional translation case.

were explored. The tolerances used for state connection were
(ep = 0.15,¢;, = 0.1, ¢, = 0.3,¢, = 0.5). The average
total computation time was approximately 6 minutes.

The second result, given in Figure 14, shows a fictitious,
underactuated spacecraft of approximate dimensions [0.65 m,
0.17 m, 0.77 m] that must maneuver through two narrow gates
and enter a hangar that has a small entrance. There are five
inputs, each of which applies a thrust impulse. The possible
motions are forward, up, down, clockwise roll, and counter-
clockwise roll:

0 0

Up = o |,] 025 |.| —025 |,

0.5 0 0

0 0

01(,] 0

0 0

0 0 0 0
U=l o], ]o0o]|.] 0], | o [,

0 0 0 0.01

0

0

—0.01

Planning is performed directly in the 12-dimensional state

space. The tolerances used for state connection were (€, =
0.05,¢4 = 0.02,¢, = 0.3,¢, = 0.5). The average total
computation time was approximately 11 minutes.

6. Analysis

In this section, the theoretical behavior of the planning method
is characterized. Theorems 1 and 2 express the rate of con-
verge of the planner, and Theorem 3 establishes that the plan-
ner is probabilistically complete (i.e., the probability that a
solution is found tends to 1 as the number of iterations tends to
infinity). These results represent a significant first step toward
gaining a complete understanding of behavior of the plan-
ning algorithm; however, the convergence rate is expressed
in terms of parameters that cannot be measured easily. It re-
mains an open problem to characterize the convergence rate in
terms of simple parameters that can be computed for a particu-
lar problem. This general difficulty even exists in the analysis
of randomized path planners for the holonomic path-planning
problem (Hsu, Latombe, and Motwani 1999; Lamiraux and
Laumond 1996).

For simplicity, assume that the planner consists of a single
RRT. The bidirectional planner is only slightly better in terms
of our analysis, and a single RRT is easier to analyze. Fur-
thermore, assume that the step size is large enough so that the
planner always attempts to connect X eqr t0 Xrqnd-
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Fig. 11. Solution trajectory for navigating through a sequence of narrow passages for the three-dimensional translation case.
The initial state is at the lower left, and the goal is at the upper right.

Let A = {Ag, Ay, ..., Ax} be a sequence of subsets of
X, referred to as an attraction sequence. Let Ag = {xjnir}.
The remaining sets must be chosen with the following rules
in mind. For each A; in A, there exists a basin, B; C X, such
that the following hold:

1. Forallx € A;_1,y € Aj,and z € X \ B;, the metric,
p, yields p(x,y) < p(x, 2).

2. For all x € B;, there exists an m such that the sequence
of inputs {u1, us, ..., uy} selected by the EXTEND
algorithm will bring the state into A; € B;.

Finally, it is assumed that Ay = Xgoa.

Each basin B; can intuitively be considered as both a safety
zone that ensures an element of B; will be selected by the near-
est neighbor query and a potential well that attracts the state
into A;. An attraction sequence should be chosen with each
A; as large as possible and with k as small as possible. If the
space contains narrow corridors, then the attraction sequence
will be longer and each A; will be smaller. Our analysis indi-
cates that the planning performance will significantly degrade

in this case, which is consistent with analysis results obtained
for randomized holonomic planners (Hsu et al. 1998). Note
that for kinodynamic planning, the choice of metric, p, can
also greatly affect the attraction sequence and, ultimately, the
performance of the algorithm.

Let p be defined as

p= rniin{ﬂ(Ai)/:Uv(xfree)},

which corresponds to a lower bound on the probability that a
random state will lie in a particular A;.

The following theorem characterizes the expected number
of iterations.

THEOREM 1. If a connection sequence of length k exists,
then the expected number of iterations required to connect
Xinir 10 Xgoql s no more than k/p.

Proof. If an RRT vertex lies in A;_; and a random sample, x,
falls in A;, then the RRT will be connected to x. This is true
because using the first property in the definition of a basin,
it follows that one of the vertices in B; must be selected for
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Fig. 12. Rapidly exploring random trees constructed during planning for the fully orientable satellite model with limited
translation. A total of 23,800 states were explored before a successful candidate solution trajectory was found.

extension. Using the second property of the basin, inputs will
be chosen that ultimately generate a vertex in A;.

In each iteration, the probability that the random sample
lies in A; is at least p; hence, if A;_1 contains an RRT vertex,
then A; will contain a vertex with probability at least p. In
the worst case, the iterations can be considered as Bernoulli
trials in which p is the probability of a successful outcome. A
path-planning problem is solved after k successful outcomes
are obtained because each success extends the progress of the
RRT from A;_{ to A;.

LetCy, Co, ..., C,bei.i.d. random variables whose com-
mon distribution is the Bernoulli distribution with parameter
p. The random variable C = C1 + C, + - - - + C,, denotes the
number of successes after n iterations. Because each C; has
the Bernoulli distribution, C will have a binomial distribution,

n k n—k
(k) RE(1 = )k,

in which £ is the number of successes. The expectation of the
binomial distribution is n/p, which also represents an upper

bound on the expected probability of successfully finding a
path. O

The following theorem establishes that the probability of
failure decreases exponentially with the number of iterations.

THEOREM 2. If an attraction sequence of length k exists, for
aconstant § € (0, 1], the probability that the RRT fails to find
a path after n iterations is at most e 7 (=20

Proof. The random variable C from the proof of Theorem 1
has a binomial distribution, which enables the application of a
Chernoff-type bound on its tail probabilities. A theorem from
Motwani and Raghavan (1995) is directly applied to establish
the theorem. If C is binomially distributed, § € (0, 1], and
w = E[C], then P[C < (1 —8)u] < exp(ud?/2), in which

8§ = 1 — k/(np). The expression in the exponent can be
2

—k
simplified to —3np + k — % Note that eZ7 < 1. This
implies that exp(1182/2) < o3 (p=2k) O
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Fig. 13. The docking maneuver computed for the fully orientable satellite model. The satellite’s initial state is in the lower
left corner, and the goal state is in the interior of the cargo bay of the shuttle.

‘We now consider probabilistic completeness. Suppose that
motions obtained from the incremental simulator are locally
constrained. For example, they might arise by integrating
X = f(x,u) over some time At. Suppose that the number
of inputs to the incremental simulator is finite, Af is con-
stant, no two RRT vertices lie within a specified € > 0 of
each other according to p, and EXTEND chooses the input
at random. It may be possible eventually to remove some
of these restrictions; however, we have not yet pursued this
option. Suppose X;ui; and Xgoq lie in the same connected
component of a nonconvex, bounded, open, n-dimensional
connected component of an n-dimensional state space. In ad-
dition, there exist a sequence of inputs, uy, us, ..., Ui, that
when applied to x;,;; yield a sequence of states, x;,;; = xo,
X1, X2, ..., Xk41 = Xgoal. All of these states lie in the same
open connected component of X f¢.

The following establishes the probabilistic completeness
of the nonholonomic planner.

THEOREM 3. The probability that the RRT initialized at x;,;,
will contain x4/ as a vertex approaches 1 as the number of
vertices approaches infinity.

Proof. The argument proceeds by induction on i. Assume
that the RRT contains x; as a vertex after some finite num-
ber of iterations. Consider the Voronoi diagram associated
with the RRT vertices. There exists a positive real num-
ber, ¢y, such that u(Vor(x;)) > ci, where Vor(x;) denotes
the Voronoi region associated with x;. If a random sample
falls within Vor(x;), the vertex will be selected for exten-
sion and a random input is applied; thus, x; has probability
w(Vor(x;))/ (X free) of being selected. There exists a sec-
ond positive real number, ¢, (which depends on cy), such that
the probability that the correct input, u;, is selected is at least
cy. If both x; and u; have a probability of at least ¢, of be-
ing selected in each iteration, then the probability tends to one
that the next step in the solution trajectory will be constructed.
This argument is applied inductively from x; to x; until the
final state xgoq; = Xx41 is reached. O

7. Conclusions

We have presented the first randomized approach to kino-
dynamic planning (LaValle and Kuffner 1999). We believe
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Fig. 14. An underactuated spacecraft that performs complicated maneuvers. The state space has 12 dimensions, and there are
five inputs.
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Fig. 15. The attraction sequence has two properties: (1) in terms of the metric, p, any point in A;_ is closer to any point in
A; than any point outside of B; and (2) any point within B; can be attracted to A;.

that this approach and other randomized kinodynamic plan-
ning techniques will prove useful in a wide array of appli-
cations that includes robotics, virtual prototyping, and com-
puter graphics. Recently, our planner was applied to automat-
ing the flight of helicopters in complicated three-dimensional
simulations that contain obstacles (Frazzoli, Dahleh, and
Feron 1999). We presented a state-space perspective on
the kinodynamic planning problem that is modeled after the
configuration-space perspective on basic path planning. We
then presented an efficient, randomized planning technique
that is particularly suited to the difficulties that arise in kino-
dynamic planning. We implemented this technique and gen-
erated experiments for problems of up to 12 degrees of free-
dom. The planning technique appears to generate good paths;
however, we make no claims that the paths are optimal or near
optimal (this assumption is common for path-planning algo-
rithms in €). Some analysis of the planning algorithm was
also provided; however, it remains an open problem to obtain
convergence results expressed in terms of parameters that can
be computed for a given example. Several issues and topics
for future research are mentioned below.

7.1. Designing Metrics

The primary drawback of RRT-based methods is the depen-
dency of the performance on the choice of the metric, p. All
of the results presented in Section 5 were obtained by as-
signing a simple, weighted Euclidean metric for each model
(the same metric was used for different collections of obsta-
cles). Nevertheless, we observed that the computation time
varies dramatically for some problems as the metric is varied.

This behavior warrants careful investigation into the effects of
metrics. This problem might seem similar to the choice of a
potential function for the randomized potential field planner;
however, because RRTs approach various random samples,
the performance degradation is generally not as severe as a
local minimum problem. Metrics that would fail miserably
as a potential function could still yield good performance in
an RRT-based planner.

In general, we can characterize the ideal choice of a metric
(technically this should be called a pseudometric because of
the violation of some metric properties). Consider a cost or
loss functional, L, defined as

T

L= /l(x(t), u®)dt +17(x(T)).

0

As examples, this could correspond to the distance traveled,
the energy consumed, or the time elapsed during the execution
of a trajectory. The optimal cost to go from x to x” can be
expressed as

T

o) = mind [ 10w @)t +1(7)
u(t
0

Ideally, p* would make an ideal metric because it indicates
closeness as the ability to bring the state from x to x” while
incurring little cost. For holonomic planning, nearby states in
terms of a weighted Euclidean metric are easy to reach, but for
nonholonomic problems, it can be difficult to design a good
metric. The ideal metric has appeared in similar contexts as
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the nonholonomic metric (Laumond, Sekhavat, and Lamiraux
1998), the value function (Sundar and Shiller 1997), and the
cost-to-go function (Bagar and Olsder 1982; LaValle 1995).
Of course, computing p* is as difficult as solving the original
planning problem. It is generally useful, however, to consider
p* because the performance of RRT-based planners seems to
generally degrade as p and p* diverge. An effort to make
a crude approximation to p*, even if obstacles are neglected,
will probably lead to great improvements in performance. For
a particular system, it may be possible to derive p from sev-
eral alternatives, including a Lyapunov function, a steering
method, a fitted spline curve, or an optimal control law for
a locally linearized system. In Frazzoli, Dahleh, and Feron
(1999), the cost-to-go function from a hybrid optimal con-
troller was used as the metric in an RRT to generate efficient
plans for a nonlinear model of a helicopter.

7.2. Efficient Nearest Neighbors

One of the key bottlenecks in the construction of RRTs so far
has been nearest neighbor computations. To date, we have
only implemented the naive approach in which every vertex
is compared to the sample state. Fortunately, the development
of efficient nearest neighbor for high-dimensional problems
has been a topic of active interest in recent years (e.g., Arya
et al. 1998; Indyk and Motwani 1998). Techniques exist that
can compute nearest neighbors (or approximate nearest neigh-
bors) in near-logarithmic time in the number of vertices, as
opposed to the naive method, which takes linear time. Our ini-
tial implementation and experimentation with efficient nearest
neighbor techniques indicate dramatic performance improve-
ments (typically an order of magnitude or two in computation
time). Three additional concerns must be addressed to in-
corporate efficient nearest neighbor techniques into the algo-
rithm: (1) any data structure that is used for efficient nearest
neighbors must allow incremental insertions to be made effi-
ciently owing to the incremental construction of an RRT, (2)
the method must support whatever metric (p) is chosen, and
(3) simple adaptations must be made to account for the topol-
ogy of the state space (especially in the case of S! and P3,
which arise from rotations).

7.3. Variational Optimization

One idea for further investigation might be to construct RRTs
to find initial trajectories and then employ a variational tech-
nique to optimize the trajectories (e.g., see Bryson and Ho
1975; Zefran, Desai, and Kumar 1996). Because of random-
ization, it is obvious that the generated trajectories are not
optimal, even within their path (homotopy) class. For ran-
domized approaches to holonomic planning, it is customary
to perform simple path smoothing to partially optimize the
solution paths. Simple and efficient techniques can be em-
ployed in this case; however, in the presence of differential

constraints, the problem becomes slightly more complicated.
In general, variational techniques from classical optimal con-
trol theory can be used to optimize trajectories produced by
our methods. For many problems, a trajectory that is optimal
over the path class that contains the original trajectory can
be obtained. These techniques work by iteratively making
small perturbations to the trajectory by slightly varying the
inputs and verifying that the global constraints are not vio-
lated. Because variational techniques require a good initial
starting trajectory, they can be considered as complementary
to the RRT-based planners. In other words, the RRT-based
planners can produce good initial trajectories for variational
optimization techniques. The bidirectional planner could be
adapted to generate trajectories in multiple path classes. In
combination with variational techniques, it might be possible
to develop an RRT-based planner that produces trajectories
that improve over time, ultimately converging probabilisti-
cally to a globally optimal trajectory.

7.4. Collision Detection

For collision detection in our previous implementations, we
have not yet exploited the fact that RRTs are based on in-
cremental motions. Given that small changes usually occur
between configurations, a data structure can be used that dra-
matically improves the performance of collision detection and
distance computation (Guibas, Hsu, and Zhang 1999; Lin
and Canny 1991; Mirtich 1997; Quinlan 1994). For pairs of
convex polyhedral bodies, the methods proposed in Lin and
Canny (1991) and Mirtich (1997) can compute the distance
between closest pairs of points in “almost constant time.” It
is expected that these methods can dramatically improve per-
formance. It might be best to take the largest step possible
given the distance measurement (a given distance value can
provide a guarantee that the configuration can change by a
prescribed amount without causing collision). This might,
however, counteract the performance benefits of the incre-
mental distance computation methods. Further research is
required to evaluate the trade-offs.
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