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This equation leads to the following for H2 in terms of known 
quantities: 

H 2 = P - h l u U - h 2 s g ~ , - h 2 c g ~ r .  (15) 

Because ( H b ,  H2y, Hlz)  are known from (15), (13) can be used to 
solve for 0 ,  and e2. Two values of O2 are obtained from (13c). 

&=arcsin (-HzZ/q3),  and (T-02). (16) 

Then 19, can be found unambiguously from (13a) and (13b). 

0, = 2  arctan ~ ( H2?.i3c2) . 

To determine 04,  we consider point HI (Fig. 1). In this case, there 
is no need to proceed formally as before because the current location 
of point H I  is known simply as follows: 

HI = P -  hluu. (18) 

Also, by applying the zero reference position method, and using H l o  
= (0, 0, h2)‘, we obtain 

(19) 

Rearranging 
r o i  

L J 

From (20), we find s4 and c4 and determine O4 unambiguously as 

There are four sets of practical solutions (i.e., q3 > 0). 
Singularities occur when O5 = 0 or  180” (lo), and O2 = k 9 0 ”  (16). 
Investigation of (13) and (20) shows that the following relationship 
exists among the solution sets: 
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Optimal Robot Path Planning Using the Minimum-Time 
Criterion 

JAMES E. BOBROW 

Abstract-A path planning technique is presented which produces 
time-optimal manipulator motions in a workspace containing obstacles. 
The full nonlinear equations of motion are used in conjunction with the 
actuator limitations to produce optimal trajectories. The Cartesian path 
of the manipulator is represented with B-spline polynomials, and the 
shape of this path is varied in a manner that minimizes the traversal time. 
Obstacle avoidance constraints are included in the problem through the 
use of distance functions. In addition to computing the optimal path, the 
time-optimal open-loop joint forces and corresponding joint displace- 
ments are obtained as functions of time. The examples presented show a 
reduction in the time required for typical motions. 

INTRODUCTION 
The automatic generation of large motions for robots is a problem 

which must be examined carefully if truly automated factories are to 
become a reality. Many researchers have separated the problem into 
several smaller, more tractable subproblems. Some of these are: 
collision-free path planning, time-optimal control along specified 
paths, feedback control along a specified path using a known velocity 
profile, and vision-based path planning. In this communication, the 
problem of finding the collision-free path which gives the minimum- 
time motion is investigated. It is assumed that an initial collision-free 
path is known as a starting point, that the manipulator equations of 
motion are known, and that a geometric description of the robot 
workspace is available. 

Research on determining the shape of the path for collision-free 
motions has been conducted by Luh [12], Lozano-Perez [ l l] ,  and 
Brooks [3]. Since infinitely many collision-free paths are usually 
possible, the criterion used to select one of them is most often 
minimum-distance, that is, the path with the smallest arc-length. In 
many cases this solution is not practical, since minimum-distance 
paths are straight lines with sharp corners near the obstacle 
intrusions. Robot motion along such paths would require the velocity 
of the arm tip to stop or slow down considerably at each corner. This 
leads to the need for some criterion other than minimum distance to 
be used for selection of the collision-free path. In this study minimum 
time rather than minimum distance was used as the basis for 
determining the path. 

Because of the importance of the time-optimal control problem, 
several approaches have been developed for its solution in recent 
years. The research can be separated roughly into three categories, 
which are 1) determination of the minimum time velocity profile for a 
specified geometric path [ 2 ] ,  [15], 2) direct use of the Maximum 
Principle [ I O ]  to determine the time-optimal control inputs required 
for unconstrained motion between two endpoints 191, [ 131, 1191, and 
3) the use of approximations of an initial feasible trajectory in 
conjunction with an iterative, nonlinear parameter optimization 
algorithm to determine either unconstrained or collision-frec motions 
between two endpoints [4], [ 5 ] ,  [ 7 ] ,  [SI, [14]. In addition to these 
three categories, research has been conducted on the selection of 
good geometric paths using analytical methods. In [ 161, it has been 
shown that a path in the form of a geodesic minimizes a lower bound 
on the traversal time. 

The research reported here falls into category 3, and is similar to 
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that of Rajan [I41 and of Dubowsky and Shiller [4]. For these 
approaches, the geometric path of the manipulator is represented as a 
set of parameterized interpolation functions, and the parameters are 
varied in such a way that the path traversal time required for the 
motion is minimized. For any specified path, the time-optimal 
velocity profile is found using the algorithm developed in [2], which 
ensures that the actuators are used to their fullest extent during the 
motion along the path. As an alternative to parameterizing the motion 
of each joint first in space and then in time, Gilbert and Johnson [7], 
[8] approach the same problem by parameterizing the motion of each 
joint directly as a function of time. The joint motions are then 
optimized while ensuring that at each instant, obstacles are avoided 
and no actuator input needed for the motion exceeds its bound. 

The following sections describe in more detail the optimization 
approach used. A discussion is given regarding some of the numerical 
difficulties which were encountered, and the steps taken to avoid 
them. In addition, a comparison is made between the approach used 
here, and the time-optimal control formulation of the obstacle-free 
motion problem. 

PROBLEM DEFINITION AND OPTIMIZATION PROCEDURE 
For the following development, the equations of motion for a 

three-degree-of-freedom, elbow-type robot were used. The manipu- 
lator mass properties and link lengths used for the examples in this 
communication are given in Appendix I. However, the procedure can 
be used for any nonredundant robot configuration, or for redundant- 
type robots if all the joint displacements have been given as specified 
functions of a path parameterization. The three-dimensional Carte- 
sian path of the end-effector was represented with uniform cubic B- 
spline polynomials [ I ]  (see Appendix 11). Polynomjals of this form 
have efficient computational properties, and are C2 continuous. The 
parameterization for motion in the x spatial dimension is given by 

n +  I 

x (s )=  u,b,(s), O s s s n  (1) 
I =  - 1  

where U ,  are specified path vertices, and b,(s) are piecewise-cubic B- 
spline basis functions. For any s, only four of the basis functions b;(s) 
are nonzero. This provides computational simplicity since for any 
value of s the summation in (1) reduces to only four terms. It also 
provides for local control of the path shape since any position is 
influenced only by its closest four neighboring vertices. 

For any given initial and final path positions, the vertex values U -  I 

and U,+ I can be computed explicitly to ensure that the given initial 
position x(0) = x; = U O ,  and that the given final position x(n) = xf = 
u , ~ .  Once the remaining vertices U , ,  i = 1, 2 ,  . . . , n - 1 have been 
specified, and the remaining Cartesian coordinates y(s), z(s) are 
similarly defined, the path of the robot end-effector is defined entirely 
by the parameter s. From this path definition, the time-optimal 
velocity profile for s can be found using the algorithm presented in 
[2]. This algorithm makes use of the fact that for any position on the 
path s, a velocity SmaX can be found above which no combination of 
admissible joint torques can keep the manipulator traveling on the 
path. The optimum velocity profile S ( t )  is then found by integrating 
the equations of motion using the maximum or minimum available 
joint torques which will keep the robot traveling along the path, and 
which will keep the velocity below the maximum S,,, at every points 
on the curve. The minimum-time algorithm of [2] is computationally 
efficient, and only requires iteration on one variable at certain 
positions on the phase plane. 

The optimal path planning problem can then be written as one of 
minimizing 

J(u) = tf= [ n  $ (the total path traversal time) ( 2 )  
- 0  

while ensuring that the robot equations of motion 

M ( q ) B + b ( q ,  4 ) = u  (3) 

are satisfied, where the individual joint torques U, are bounded by 

U Z m l n ( q ,  4)sujsu!rnax(q, 41, i =  1, 2 ,  3. (4) 

The bounds U, ,"," and U, are assumed to be known functions of the 
joint positions and velocities, and are often constants. In addition to 
constraints on the joint torques, the initial and final joint positions 

q(to)=qo and q( t f )=q/  ( 5 )  

must be reached, and it is assumed that q(to) = q(tf) = 0. During the 
motion, the joint displacements are also usually bounded by 

with the limits on q; depending on the physical construction of the 
manipulator. 

The final constraint is that of collision avoidance. This condition is 
given by 

0 < 6 s d ( u )  (7) 

where d(u) is the minimum distance between the robot and all 
obstacles taken over the entire path, U is the set of 3(n + 3) vertices 
which define the path given by (1). and 6 is a constant which 
represents the margin of safety for the motion. Note that the path 
vertices U completely determine the end-effector path and joint 
positions from (1). Therefore, the distance function depends only on 
U. For a manipulator of arbitrary shape and general obstacles, the 
evaluation of d(u) is computationally intensive. Some progress and 
results on the evaluation of d(u) and its gradient have been reported in 
[7], but a considerable amount of work remains to be completed if 
typical CAD solid modeling systems are to be used for the 
manipulator geometric representation. 

The numerical optimization problem can then be stated as: Find the 
B-spline vertices uI ,  i = 1 ,  2, . . . , n - 1 which, along with the 
specified values of u0, U ,  and the computed values of U - I and U ,  + I ,  
define a path that minimizes (2) subject to (3)-(7). For any set of 
vertices U,, we use the minimum-time algorithm of [2] to evaluate the 
traveling time tf. This algorithm ensures that the constraints (3)-(5) 
are satisfied, and requires the control U;([), i = 1 ,  2, 3,  to be on the 
boundary of the constraint set. That is, at any instant, at least one of 
the control inputs u,( t )  is at its maximum or minimum value. In 
addition to satisfying these constraints, the minimum-time algorithm 
of [2] produces the optimal open-loop joint angles q ( t )  and 
corresponding joint torques u( t )  which will keep the robot tip moving 
on the three-dimensional path specified by a given set of vertices U , .  

The joint displacement constraints (6) and minimum distance 
constraint (7) are the only remaining constraints which must be 
enforced. Hence, the task of minimizing J reduces to that of varying 
the path vertices U , ,  computing the constraints (6) and (7), and 
evaluating tf using the minimum-time algorithm. Several nonlinear 
optimization techniques can be used for the minimization. For the 
examples reported in this study, the general-purpose optimization 
program ADS [17] was used. This program offers several different 
options for the optimization algorithm to be used. The algorithm 
which performed most satisfactorily for the examples in the commun- 
ication was a sequence of unconstrained minimizations with cubic 
interior penalty functions for the constraints. For each unconstrained 
minimization, the Davidon-Fletcher-Powell search technique [6] 
was used. The method of Golden Sections [18] was used for the one- 
dimensional search. 

The optimization requires the gradients of the objective function tf, 
and of the constraints d(u) and q ( u ) .  Analytic derivatives of the 
minimum traversal time at,/au, require differentiation of the right- 
hand side of (2). This, in turn, requires the derivative aS/au , ,  but S is 
found from the solution to the time-optimal control problem as 
defined in [2]. It is possible to obtain the derivatives required, but the 
derivation needed for this is extremely tedious. The partial deriva- 
tives ad(u ) /av ,  are easier to evaluate, and the properties of these 
functions are discussed thoroughly in [7], It is clearly demonstrated in 
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Fig. 1. Initial and optimal paths for a two-link planar motion in the vertical 
plane. 

[71 that there may be some points (i.e., when the minimum distance is 
not unique) along the path where the function d(u) is not differentia- 
ble. However, no problems were encountered in this study due to this 
lack of differentiability because these points occur only at isolated 
positions of the arm, and these positions were not encountered for the 
motions considered. The lack of differentiability &U) may present a 
problem for certain cases of more general paths and obstacles. The 
final partial derivatives needed for the optimization are &q,/au, and 
these are the easiest to evaluate since the joint angles are obtained 
directly from the three-dimensional path using the robot’s inverse 
arm solution. 

For the results reported here, we did not compute any of these 
derivatives analytically because of the difficulty in differentiating t,. 
Analytic gradients would be extremely tedious to derive for the 
general three-degree-of-freedom robot under consideration. The 
ADS program allows finite-difference gradients to be computed with 
a user-defined step size. The time required to compute the finite 
difference gradients adds significantly to the overall optimization 
time. However, the overall computation time was relatively short. On 
a VAX 11-780, the CPU time for the entire optimization ranged from 
2 to 30 min, depending on the number of path vertices U, used for the 
path representation. 

NUMENCAL EXAMPLES 
The first example considered was that of finding the optimal path 

between po and p,  as shown in Fig. 1. This is a planar problem which 
uses the full nonlinear manipulator equations of motion with the 
inertial properties given in Appendix I.  The motion takes place in the 
vertical plane, so gravity is included in the model. The mass 
properties and link lengths used in the equations of motion were 
chosen to approximate UCI’s experimental elbow type manipulator. 
The actuator torque bounds were chosen to be constant even though 
they are actually nonlinear functions of the joint angles. The main 
reason for using constant bounds is that it is easier to interpret the 
numerical output. Only a small amount of extra computational 
overhead is needed to use arbitrary torque bounds with the algorithm 
in [2]. 

In this problem we assume that there are no obstacles in the 
workspace, and that no joint angular displacement constraints are 
active. This gives rise to an unconstrained minimization since the 
inequalities (6) and (7) are both satisfied. The initial path was a 
straight line between po  and p l .  For the first optimization, the path 
was broken into two uniform cubic B-spline intervals with the x and y 
positions of the center vertex being the parameters to be varied during 
the minimization. After thirty iterations (including finite-difference 
gradients) and about 3 CPU minutes on the VAX 11-780, the curved 
path also shown in Fig. 1 was obtained. Fig. 2(a) and (b) shows the 
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Fig. 2. (a) Optimal phase plane trajectory for the initial path of Fig. 1. (b) 
Optimal phase plane trajectory for the final path of Fig. 1. 

optimal velocity profiles for the initial path and for the curved path. 
Note that the traveling time 

tf= lo n 7=0.47 ds s 

for the first path and t/ = 0.428 s for the optimal path. It can be seen 
that the average tangential velocity was higher for the second case. 

Fig. 3(a) and (b) shows the optimal open-loop joint torques for both 
cases. Note that the optimal path requires a higher joint torque 
throughout the interval from the actuator that is not at its limit than 
does the initial straight-line path. This shows that the curved path 
produces a more uniform distribution of the actuator torques for the 
time-optimal trajectory. The path obtained agrees with our intuition. 
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(a) Optimal open-loop torques corresponding to the trajectory shown 
in Fig. 2(a). (h) Optimal open-loop torques corresponding to the trajectory 
shown in Fig. 2(b). 

Fig. 3. 

If one were asked to lift a weight from po  top, ,  one would probably 
pull the weight in while lifting it, which is similar to the path obtained 
from the optimization. 

In order to examine convergence properties, the path was broken 
into more intervals. Fig. 4 shows the optimum path when 1 ,  3, 5 ,  and 
8 intermediate B-spline vertices are used for the path representation. 
Note that the difference in the optimum traversal time between the 
case of 1 intermediate vertex and 8 intermediate vertices was only 2 .5  
percent. The computation time needed for each case increased 
approximately linearly with the number of vertices used. The 
nonlinearity of the function being minimized prohibits uniqueness 
arguments to be made for the path found from the minimization 
procedure. It does appear from Fig. 4 that the optimum path is 
converging as the number of path degrees of freedom are increased. 

Fig. 4. The optimal paths found when 1,  3 ,  5, and 8 intermediate B-spline 
vertices were used for the path representation. The traversal times wcre 
0.428, 0.423, 0.420, 0.418 s, respectively. 

Fig. 5(a) and (b) shows the optimal velocity profile and the optimal 
torques obtained for the case of 8 intermediate B-spline intervals 
corresponding to the final path found which was shown in Fig. 4. 
Note that for much of the time interval, both actuator torques are 
nearly saturated. 

The second example is that of a three-dimensional path with an 
obstacle in the workspace, as shown in Fig. 6. The collision 
avoidance constraint was enforced by ensuring that the distance 
between the rectangular box and the manipulator tip was always 
greater than zero. The distance function was evaluated by stepping 
the arm along the path using small increments of the path parameters, 
and saving the distance d(s) which was the smallest value on the 
interval s E [0, n]. This computation was easily accomplished 
numerically for this simple case, but does not prevent the arm from 
colliding with the obstacle at points other than the tip. More 
sophisticated procedures must be used to obtain the distance d(s) if 
the problem is to be solved for general shaped robots and obstacles. 

Fig. 6 shows the initial path, the optimal constrained path, and the 
unconstrained path. Note that for the unconstrained case, the optimal 
path is not a straight line between the endpoints. The arm is pulled in 
slightly while the motion is occurring, and then it is extended. Fig. 
7(a) and (b) shows the phase plane trajectories for the initial path and 
the final constrained paths. Observe how changing the path curvature 
to achieve minimum-time motion increases the maximum allowable 
velocity at the lowest points on the phase plane trajectory. Fig. 8 
shows the open-loop joint torques corresponding to the trajectory 
shown in Fig. 7(b). In practical applications, high-bandwidth 
actuators are needed to produce the torques shown in Fig. 8 with 
adequate resolution. Some investigation is currently being conducted 
at UCI on the development of high-performance actuators for this 
purpose. 

DISCUSSION 
As an increasing number of B-spline intervals were used, we began 

to experience premature termination of the optimization program. 
This was due to the introduction of potentially highly curved paths 
arising from the more closely spaced path vertices. The high local 
path curvature required the robot to slow down in order to stay on the 
path, and this resulted in local minima for the optimization. The 
problem was partially eliminated using a technique known as 
regularization. This method is used to penalize highly curved or 
irregularly shaped functions in order to produce smooth curves. To 
regularize the minimization, we add to the objective function a 
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Fig. 6. Top view of three different three-dimensional motions between fixed endpoints. The traversal time for the initial path was 
0.375 s, the optimal path was 0.308 s, and the unconstrained path was 0.27 s. 

measure of the total path curvature and can be computed analytically for any path. The scalar a is a small 
positive weighting factor. For the cases we have examined a = 1 X 

The question “Has the path converged to the true optimum?” is 
very difficult-if not impossible-to answer. As was shown in Fig. 4,  
the path did appear to converge as the number of intervals was s,” [ (s) ’+ (F) ’+ (F) ’1 ‘’’ (9) increased. The optimality conditions for the unconstrained path, fixed 
endpoint, minimum-time motion problem can be derived using the 

The function C(u) is easily shown to be quadratic in the path vertices, Maximum Principle [lo], and they offer some insight to the 

J (  U )  = tf+ aC(u)  (8) has worked nicely. 
where 
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question's answer. To minimize the time (2), subject to the boundary 
conditions (5) with no constraints on the path, we obtain the standard 
two-point boundary value problem. Because the Hamiltonian for this 
system is a linear function of the controls, the Maximum Principle 
can be used to show that each of the control torques will be saturated 
(bang-bang) throughout the motion unless singular intervals exist. 
For this nonlinear system, it does not appear to be possible to derive 
meaningful analytical conditions for which singular intervals occur. 

The recent paper of Meier and Bryson [13] contains several 
examples of optimal solutions to the two-point boundary value 
problem for a planar manipulator with revolute joints. The examples 
given in [I31 rarely have any singular intervals, even for a case very 
close to the first example presented in this paper. It should be 
expected that by allowing the path vertices to vary using a numerical 
optimization procedure which minimizes the time as was done in this 

research, we would obtain the same path as that which would be 
found by using the Maximum Principle for the unconstrained path 
minimum-time problem. However, Fig. 5(b) shows that the optimal 
torques are not each entirely on the boundary throughout the motion. 
Because it is unlikely that singular intervals occur during the motion, 
the path converged upon by our method probably does not satisfy the 
optimality conditions. As more B-spline vertices are used for the path 
representation, one would expect to arrive at a path which does 
satisfy the optimality conditions of the Maximum Principle. How- 
ever, the extra computation time required for this does not warrant 
the small decrease in the final time which would be obtained. This can 
be seen from noting the small changes in tf  as more vertices are used 
in the first example. The traversal time is first greatly reduced with 
only a few vertices, and the addition of more vertices only slightly 
decreases the time. 
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Link 2: Approximate Properties 
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weight = 13.0 Ib. 
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z 
Fig. 9. Schematic representation of the manipulator model used. 

CONCLUSIONS 
An off-liine path planning technique has been presented which 

iteratively computes time-optimal paths. The full nonlinear equations 
of motion are used, assuming the manipulator has rigid links. A B- 
spline polynomial representation is used to represent the geometric 
path. The path geometry is optimized by using a general-purpose 
nonlinear constrained optimization program. Obstacle avoidance 
constraints are included in the optimization program through the use 
of distance functions. 

Computational efficiency was not the main concern of the research 
reported here. However, the computation time required ranged from 
only 2 CPU minutes to a maximum of 30 CPU minutes on a VAX 11- 
780, depending on the number of vertices used to represent the path. 
This computation time can be significantly reduced through the use of 
analytic gradients of the objective function. The algorithm can be 
used for general off-line programming applications when the robot 
equations of motion are available, and a geometric description of the 
workspace geometry is known. 

APPENDIX I 
The manipulator used for this study was a three-degree-of-freedom 

elbow type as shown in Fig. 9. The mass properties and link lengths 
were chosen to approximate the University of California, Irvine’s 
experimental robot. The following lists give the model parameters 
used for the analysis. 

Link I: Approximate Properties 
Link length 11 = 2.021 ft 
distance to mass center 1; = 1.333 ft 
weight = 10.0 Ib 

Base Intertia 
J = 0.50 slug*ft2 

Torque B o u n h  
Base rotary actuator 
lower link 1 actuator 
upper link 2 actuator 

APPENDIX II 
The. uniform cubic B-spline basis functions used were chosen 

because of their simplicity and computational efficiency. An explicit 
formula is given for the spline function in this section. For more 
details on the properties of B-splines, see [ 11. 

The path parameterization for the x spatial dimension is given by 

where the vertices ui are the amplitudes modulating the basis 
functions bi(s). The desired initial end-effector position in x is uo and 
the final position is U,. The vertices U - 1 and U, + I are given by 

U-1 = 2uo-u1 
uo desired initial position 
U, desired final position 
U , + I  = 2u,-u,-1 

where V I  and U”- I are intermediate vertices which may be any value. 
The purpose of U- 1 and U,+ 1 is to cause x(0) = uo the initial value, 
and x(n) = U, the final value given by (Al). 

The basis functions bi(s) are nonzero over four successive intervals 
in s. which are given by 

1 - [1+3(s - i+  1 ) + 3 ( ~ - i + 1 ) ~ - 3 ( s - i +  1)3], 
6 

1 
- [4-6(s-i)’+ 3 ( ~ - i ) ~ ] ,  
6 

1 ; [ 1 - 3 ( s - i - l ) + 3 ( ~ - i - l ) ~ - ( s - i - l ) ~ ] ,  I 0, bj(s)= 

s e i - 2  

i - 2 s s e i -  1 

i- 1 ss<i  

issei+ 1 

i + l s s < i + 2  

i + 2 s s .  



450 IEEE JOURNAL OF ROBOTICS AND AUTOMATION. VOL.  4.  NO. 4.  AUGUST 1988 

3 4 5 6 7 
path parameter s 

The B-spline basis function b&). Fig. I O .  

For example, if i = 5, a plot of b4s) is shown in Fig. 10. The 
function b6(s) is simply a copy of b5(s) shifted to the right by one 
interval. Note that for any s, only four of the b, in (Al)  will be 
nonzero. This property allows one to vary the curvature in certain 
portions of the path, without affecting others. 
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On Terrain Model Acquisition by a Point Robot Amidst 
Polyhedral Obstacles 

NAGESWARA S .  V.  RAO. S. S .  IYENGAR. B. JOHN OOMMEN. ANI) 
R .  L. KASHYAP 

Abstract-We consider the problem of terrain model acquisition by a 
roving point placed in an unknown terrain populated by stationary 
polyhedral obstacles in .two/three dimensions. The motivation for this 
problem is that after the terrain model is completely acquired, navigation 
from a source point to a destination point can be achieved along the 
collision-free paths. And this can be done without the usage of sensors by 
applying the existing techniques for the well-known find-path problem. In 
this communication, the Point Robot Autonomous Machine (PRAM) i s  
used as a simplified abstract model for real-life roving robots. W e  present 
an algorithm that enables PRAM to autonomously acquire the model of 
an unexplored obstacle terrain composed of an unknown number of 
polyhedral obstacles in two/three dimensions. In our method, PRAM 
undertakes a systematic exploration of the obstacle terrain with its sensor 
that detects all the edges and vertices visible from the present location, 
and builds the complete obstacle terrain model. 

I. INTRODUCTION 
In recent times there has been an enormous spurt of research 

activity in the algorithmic aspects of motion planning. The problem 
of navigating a body through a terrain populated by a set of k n o w n  
obstacles (i.e., the precise geometric characterization of the obstacles 
is available) is solved in many cases. Lozano-Perez and Wes!ey [3], 
O’Dunlaing and Yap [ 5 ] ,  Reif 171, and Schwartz and Sharir [8] 
present some of the most fundamental solutions to this problem. 
Whitesides [ lo]  presents a comprehensive treatment on these and 
other solutions to the find-path and related problems. In all these 
methods, the precise model of the obstacle terrain is known  a priori, 
and path planning is done entirely computationally. Once a path is 
planned, the robot moves along the planned path, and no sensors are 
used for navigational purposes. 

Another interesting problem ia the navigation of a robot in an 
unexplored or a partially explored terrain. In this case, the entire 
terrain model may not be known, and the robot relies on its sensors 
for navigation. Lumelsky and Stepanov 141 present sensor-based 
navigation algorithms for navigating a point automaton to a destina- 
tion point using “touch” type of sensor. In this inethod localized 
sensor information is used to guide the point automaton, and this 
information is not put to any further global use. In many applications, 
incidental learning is shown to be an important enhancement in the 
navigation planning. Here, a composite model of the terrain is built 
by integrating the sensor information obtained as the robot executes 
sensor-based and goal-directed navigation. Iyengar et al. [2], 
Oommen et  al. [6], Turchan and Wong 191 discuss different versions 
of learned navigation in unexplored terrains. Here we consider the 
problem of acquiring the terrain model by systematic exploration of 
the terrain using a sensor. Our main motivation stems from the fact 
that the availability of the terrain model enables us to plan the entire 
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